DOI QR코드

DOI QR Code

Fuzzy FMECA analysis of radioactive gas recovery system in the SPES experimental facility

  • Buffa, P. (Department of Engineering, University of Palermo, Viale Delle Scienze-Parco D'Orleans) ;
  • Giardina, M. (Department of Engineering, University of Palermo, Viale Delle Scienze-Parco D'Orleans) ;
  • Prete, G. (INFN, Laboratori Nazionali di Legnaro) ;
  • De Ruvo, L. (INFN, Laboratori Nazionali di Legnaro)
  • 투고 : 2020.06.27
  • 심사 : 2020.11.05
  • 발행 : 2021.05.25

초록

Selective Production of Exotic Species is an innovative plant for advanced nuclear physic studies. A radioactive beam, generated by using an UCx target-ion source system, is ionized, selected and accelerated for experimental objects. Very high vacuum conditions and appropriate safety systems to storage exhaust gases are required to avoid radiological risk for operators and people. In this paper, Failure Mode, Effects, and Criticality Analysis of a preliminary design of high activity gas recovery system is performed by using a modified Fuzzy Risk Priority Number to rank the most critical components in terms of failures and human errors. Comparisons between fuzzy approach and classic application allow to show that Fuzzy Risk Priority Number is able to enhance the focus of risk assessments and to improve the safety of complex and innovative systems such as those under consideration.

키워드

참고문헌

  1. A. Andrighetto, C. Antonucci, et al., The SPES direct UCx target, Eur. Phys. J. Spec. Top. 150 (2007) 273-274, https://doi.org/10.1140/epjst/e2007-00321-6.
  2. A. Andrighetto, M. Manzolaro, et al., Spes: an intense source of neutron-rich radioactive beams at Legnaro, IOP Conf. Series: J. Phys. Conf. 966 (2018), 012028, https://doi.org/10.1088/1742-6596/966/1/012028.
  3. D. Benini, S. Canella, Quality-safety management and protective systems for SPES, Proceedings of ICALEPCS. Grenoble. France. (2011) 1108-1110. https://inis.iaea.org/search/search.aspx?orig_q=RN:43107260.
  4. A. Lombardi, A. Andrighetto, et al., SPES project: a neutron rich ISOL facility for re-accelerated ribs, in: CYCLOTRONS 2013 - Proceedings of the 20th International Conference on Cyclotrons and Their Applications, 2014.
  5. M. Giardina, F. Castiglia, P. Buffa, G. Palermo, G. Prete, RELAP5-3D thermal hydraulic analysis of the target cooling system in the SPES experimental facility, in: Journal of Physics: Conference Series, 2014, https://doi.org/10.1088/1742-6596/547/1/012032.
  6. M. Giardina, P. Buffa, V. Dang, S.F. Greco, L. Podofillini, G. Prete, Early-design improvement of human reliability in an experimental facility: a combined approach and application on SPES, Saf. Sci. 119 (2019) 300-314, https://doi.org/10.1016/j.ssci.2018.08.008.
  7. P. Buffa, M. Giardina, S.F. Greco, G. Palermo, V.N. Dang, L. Podofillini, J. Esposito, G. Prete, Human Reliability Analysis to support operational planning of an experimental facility, in: Safety and Reliability of Complex Engineered Systems - Proceedings of the 25th European Safety and Reliability Conference, ESREL, 2015.
  8. I. Van Beurden, W. Goble, Safety Instrumented System Design-Techniques and Design Verification, 2018, ISBN 978-1-945541-43-8.
  9. V.R. Renjith, M. Jose Kalathil, P.H. Kumar, D. Madhavan, Fuzzy FMECA (failure mode effect and criticality analysis) of LNG storage facility, J. Loss Prev. Process. Ind. (2018), https://doi.org/10.1016/j.jlp.2018.01.002.
  10. G. Gupta, R.P. Mishra, Comparative analysis of traditional and fuzzy FMECA approach for criticality analysis of conventional lathe machine, International Journal of System Assurance Engineering and Management (2020), https://doi.org/10.1007/s13198-019-00938-y.
  11. M. Giardina, F. Castiglia, E. Tomarchio, Risk assessment of component failure modes and human errors using a new FMECA approach: application in the safety analysis of HDR brachytherapy, J. Radiol. Prot. 34 (2014) 891-914, https://doi.org/10.1088/0952-4746/34/4/891.
  12. J. Kohlas, The mathematical theory of evidence - a short introduction, in: J. Dolezal, J. Fidler (Eds.), System Modelling and Optimization. IFIP - the International Federation for Information Processing, Springer, Boston, MA, 1996, https://doi.org/10.1007/978-0-387-34897-1_4.
  13. S.C. Hora, R.L. Iman, Expert opinion in risk analysis: the NUREG-1150 methodology, Nucl. Sci. Eng. 102 (1989) 323-331. https://doi.org/10.13182/NSE89-A23645
  14. T.A. Wheeler, et al., Analysis of core damage frequency from internal events: expert judgment elicitation, sandia national laboratories, NUREG/CR-4550 2 (April 1989). SAND86-2084.
  15. G. Cojazzi, L. Pinola, R. Sardella, A benchmark exercise on expert judgment techniques in PSA level 2: design criteria and general framework, International Topical Meeting on Probabilistic Safety Assessment, Utah, USA (PSA '96) (1996), 29 September-3 October.
  16. J.D. Booker, L.A. McNamara, Expertise and Expert Judgment in Reliability Characterization: A Rigorous Approach to Eliciting, Documenting and Analyzing Expert Knowledge. Engineering Design and Reliability Handbook, CRC Press, Boca Raton, 2002.
  17. L. Lelin, H. Li, L. Wang, Q. Xia, L. Ji, Failure mode and effect analysis (FMEA) with extended MULTIMOORA method based on interval-valued intuitionistic fuzzy set: application in operational risk evaluation for infrastructure, Information 10 (10) (2019) 313, https://doi.org/10.3390/info10100313.
  18. M. Giardina, M.C. Cantone, E. Tomarchio, I. Veronese, A review of healthcare failure mode and effects analysis (HFMEA) in radiotherapy, Health Phys. 111 (4) (2016) 317-326, https://doi.org/10.1097/HP.0000000000000536.
  19. M. Hashim, H. Yoshikawa, T. Matsuoka, M. Yang, Quantitative dynamic reliability evaluation of AP1000 passive safety systems by using FMEA and GO-FLOW methodology, J. Nucl. Sci. Technol. 51 (4) (2014) 526-542. https://doi.org/10.1080/00223131.2014.881727
  20. M. Giardina, M. Morale, Safety study of an LNG regasification plant using an FMECA and HAZOP integrated methodology, J. Loss Prev. Process. Ind. (35) (2015) 35-45, https://doi.org/10.1016/j.jlp.2015.03.013.
  21. A.E. Brom, I.N. Omelchenko, O.V. Belova, Lifecycle costs for energy equipment FMECA for gas turbine, in: Procedia Engineering, vol. 152, 2016, pp. 177-181, https://doi.org/10.1016/j.proeng.2016.07.688, 2016.
  22. M.J. Kalathil, V.R. Renjith, N.R. Augustine, Failure mode effect and criticality analysis using Dempster Shafer theory and its comparison with fuzzy failure mode effect and criticality analysis: a case study applied to LNG storage facility, Process Saf. Environ. Protect. 138 (2020) 337-348. https://doi.org/10.1016/j.psep.2020.03.042
  23. M. Wang, X. Deng, J. Geng, W. Jiang, FMECA of unmanned aerial vehicle power system based on the intuitionistic fuzzy set, Proceedings of the 2019 IEEE International Conference on Unmanned Systems, ICUS (2019) 250-254, 8995961.
  24. L. Liu, D. Fan, Z. Wang, et al., Enhanced GO methodology to support failure mode, effects and criticality analysis, J. Intell. Manuf. 30 (3) (2019) 1451-1468. https://doi.org/10.1007/s10845-017-1336-0
  25. L.A. Zadeh, The calculus of fuzzy if/then rules, in: Proceedings of the Theorie Und Praxis, Fuzzy Logik, Springer-Verlag, Berlin, Heidelberg, 1992, pp. 84-94.
  26. A. Dempster, Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Stat. 38 (1967) 325-339. https://doi.org/10.1214/aoms/1177698950
  27. G. Shafer, A theory of statistical evidence, in: Hooker Harper (Ed.), Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, vol. II, Reidel, Dortrecht, 1976, pp. 365-463.
  28. J. Kohlas, P.A. Monney, Theory of evidence? A survey of its mathematical foundations, applications and computational aspects, ZOR Zeitschrift Fur Operations Research Mathematical Methods of Operations Research 39 (1) (1994) 35-68, https://doi.org/10.1007/bf01440734.
  29. C.E. Shannon, A mathematical theory of communication, SIGMOBILE Mob. Comput. Commun. 5 (2001) 3-55. https://doi.org/10.1145/584091.584093
  30. Y. Deng, Deng entropy, Chaos, Solit. Fractals 91 (2016) 549-553. https://doi.org/10.1016/j.chaos.2016.07.014
  31. L. Fei, Y. Deng, Measure divergence degree of basic probability assignment based on Deng relative entropy, in: 2016 Chinese Control and Decision Conference (CCDC), New York:IEEE, Yinchuan, China, 28-30 May 2016, pp. 3857-3859, 62.
  32. L. Fei, Y. Deng, A new divergence measure for basic probability assignment and its applications in extremely uncertain environments, Int. J. Intell. Syst. 34 (2019) 584-600. https://doi.org/10.1002/int.22066
  33. J. Lin, Divergence measures based on the Shannon entropy, IEEE Trans. Inf. Theor. 37 (1) (1991) 145-151. https://doi.org/10.1109/18.61115
  34. F. Xiao, Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy, Inf. Fusion 46 (2019) 23-32, https://doi.org/10.1016/j.inffus.2018.04.003.
  35. Z. Wang, F. Xiao, An improved multi-source data fusion method based on the belief entropy and divergence measure, Entropy, Entropy 21 (6) (2019) 611, https://doi.org/10.3390/e21060611.
  36. Y. Song, Y. Deng, A new method to measure the divergence in evidential sensor data fusion, Int. J. Distributed Sens. Netw. 15 (4) (2019).
  37. X.Z. Guo, X.L. Xin, Partial entropy and relative entropy of fuzzy sets, Fuzzy Systems and Mathematics 19 (2) (2005) 97-102. https://doi.org/10.3969/j.issn.1001-7402.2005.02.019
  38. P. Smets, R. Kennes, The transferable belief model, Artif. Intell. 66 (2) (1994) 191-234. https://doi.org/10.1016/0004-3702(94)90026-4
  39. P. Smets, Data fusion in the transferable belief model, Proceedings of the third international conference on information fusion 1 (2000) PS21-PS33.
  40. K.S. Chin, Y.M. Wang, G.K.K. Poon, J.B. Yang, Failure mode and effects analysis by data envelopment analysis, Decis. Support Syst. 48 (1) (2009) 246-256. https://doi.org/10.1016/j.dss.2009.08.005
  41. Z. Zhang, X. Chu, Risk prioritization in failure mode and effects analysis under uncertainty, Expert Syst. Appl. 38 (1) (2011) 206-214. https://doi.org/10.1016/j.eswa.2010.06.046
  42. V. Anes, E. Henriques, M. Freitas, L. Reis, A new risk prioritization model for failure mode and effects analysis, Quality and Reliability Engineering 34 (4) (2018) 516-528. https://doi.org/10.1002/qre.2269
  43. M. Casamirra, F. Castiglia, M. Giardina, E. Tomarchio, Fuzzy modelling of HEART methodology: application in safety analyses of accidental exposure in irradiation plants, Radiat. Eff. Defect Solid 164 (2009) 291-296, https://doi.org/10.1080/10420150902805153, 2009.
  44. F. Castiglia, M. Giardina, F.P. Caravello, Fuzzy fault tree analysis in modern γ-ray industrial irradiator: use of fuzzy version of HEART and CREAM techniques for human error evaluation, in: 9th International Conference on Probabilistic Safety Assessment and Management, 2008. PSAM 2008.
  45. F. Castiglia, M. Giardina, E. Tomarchio, Risk analysis using fuzzy set theory of the accidental exposure of medical staff during brachytherapy procedures, J. Radiol. Prot. 30 (1) (2010) 49-62, https://doi.org/10.1088/0952-4746/30/1/004.
  46. F. Castiglia, M. Giardina, Fuzzy risk analysis of a modern g-ray industrial irradiator, Health Phys. 100 (6) (2011) 622-631, https://doi.org/10.1097/HP.0b013-31820153eb.
  47. F. Castiglia, M. Giardina, Analysis of operator human errors in hydrogen refuelling stations: comparison between human rate assessment techniques, Int. J. Hydrogen Energy 38 (2) (24 January 2013) 1166-1176, https://doi.org/10.1016/j.ijhydene.2012.10.092.
  48. F. Castiglia, M. Giardina, E. Tomarchio, THERP and HEART integrated methodology for human error assessment, Radiat. Phys. Chem. 116 (2015) 262-266, 2015. https://doi.org/10.1016/j.radphyschem.2014.12.012
  49. A.D. Swain, H.E. Guttmann, Handbook of human reliability analysis with emphasis on nuclear power plant applications (THERP) Final Report, U.S. Nucl. Regul. Comm. (NUREG/CR-1278) (1983), https://doi.org/10.2172/5752058.
  50. Y. Chen, S. Yan, C.C. Tran, Comprehensive evaluation method for user interface design in nuclear power plant based on mental workload, Nuclear Engineering and Technology 51 (2) (April 2019) 453-462. https://doi.org/10.1016/j.net.2018.10.010
  51. W.C. Cho, T.H. Ahn, A classification of electrical component failures and their human error types in South Korean NPPs during last 10 years, Nuclear Engineering and TechnologyVolume 51 (Issue 3) (June 2019) 709-718, 2019. https://doi.org/10.1016/j.net.2018.12.011
  52. A. Ramezani, T. Nazari, A. Rabiee, K. Hadad, M. Faridafshin, Human error probability quantification for NPP post-accident analysis using Cognitive-Based THERP, Prog. Nucl. Energy 123 (May 2020). Article number 103281, 2020.
  53. OREDA, BP Norway Limited and others (Eds.), OREDA, Offshore Reliability Data Handbook, 1992.
  54. IAEA-TECDOC-478, Component Reliability Data for Use in Probabilistic Safety Assessment, TECDOC Series, International Atomic Energy Agency, Vienna, 1988.
  55. IAEA-TECDOC-636, Manual on Reliability Data Collection for Research Reactors PSAS, TECDOC Series, International Atomic Energy Agency, Vienna, 1991.
  56. L.C. Cadwallader, Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use, INL/EXT-10-18973, Idaho National Laboratory Thermal Sciences and Safety Analysis Department, 2010.
  57. L.C. Cadwallader, Vacuum component reliability estimates for experimental fusion facilities, Tritium Technology, Safety, Environment, and Remote Maintenance 1021-1024 (2017), https://doi.org/10.13182/FST94-A40289.
  58. P. Buffa, F. Castiglia, M. Giardina, S.F. Greco, G. Morana, Progettazione - sviluppo del software R.A.D. per analisi FMECA. Valutazione - gestione del rischio negli insediamenti civili ed industriali, in: Conference Valutazione - Gestione del Rischio negli Insediamenti Civili ed Industriali (VGR2012), 2012. Pisa, Italy.
  59. M. Smithson, Ignorance and Uncertainty, Emerging Paradigms, Springer-Verlag, New York), 1989, p. 367.
  60. NUREG-1150, NRC: severe accident risks: an assessment for five U.S. Nuclear power plants (NUREG-1150). https://www.nrc.gov/reading-rm/doccollections/nuregs/staff/sr1150/. (Accessed 26 May 2020).
  61. Y. Kim, J. Kim, Identification of human-induced initiating events in the low power and shutdown operation using the Commission Error Search and Assessment method, Nuclear Engineering and Technology 47 (2) (2015) 187-195. https://doi.org/10.1016/j.net.2014.12.006