DOI QR코드

DOI QR Code

BOTANI: High-fidelity multiphysics model for boron chemistry in CRUD deposits

  • Seo, Seungjin (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Byunggi (Department of Energy Environmental Engineering, Soonchunhyang University) ;
  • Kim, Sung Joong (Department of Nuclear Engineering, Hanyang University) ;
  • Shin, Ho Cheol (Korea Hydro & Nuclear Power Corporation) ;
  • Lee, Seo Jeong (Korea Hydro & Nuclear Power Corporation) ;
  • Lee, Minho (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Choi, Sungyeol (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2020.08.03
  • 심사 : 2020.11.04
  • 발행 : 2021.05.25

초록

We develop a new high-fidelity multiphysics model to simulate boron chemistry in the porous Chalk River Unidentified Deposit (CRUD) deposits. Heat transfer, capillary flow, solute transport, and chemical reactions are fully coupled. The evaporation of coolant in the deposits is included in governing equations modified by the volume-averaged assumption of wick boiling. The axial offset anomaly (AOA) of the Seabrook nuclear power plant is simulated. The new model reasonably predicts the distributions of temperature, pressure, velocity, volumetric boiling heat density, and chemical concentrations. In the thicker CRUD regions, 60% of the total heat is removed by evaporative heat transfer, causing boron species accumulation. The new model successfully shows the quantitative effect of coolant evaporation on the local distributions of boron. The total amount of boron in the CRUD layer increases by a factor of 1.21 when an evaporation-driven increase of soluble and precipitated boron concentrations is reflected. In addition, the concentrations of B(OH)3 and LiBO2 are estimated according to various conditions such as different CRUD thickness and porosity. At the end of the cycle in the AOA case, the total mass of boron incorporated in CRUD deposits of a reference single fuel rod is estimated to be about 0.5 mg.

키워드

과제정보

This work was financially supported by Korea Hydro & Nuclear Power Co. Ltd. (Project No. L17S019000).

참고문헌

  1. P. Millet, E. Rapport, PWR Primary Water Chemistry Guidelines, vol. 1, EPRI, 1999. Rev. 4.
  2. A. Tigeras, J.L. Bretelle, E. Decossin, EDF AOA experience: chemical and thermal hydraulic analysis, in: Int. Conf. Water Chem. Nucl. React. Syst. Conf, San Fr, 2004, pp. 11-14.
  3. J. Deshon, PWR Axial Offset Anomaly (AOA) Guidelines, Revision 1, EPRI, Palo Alto, CA, 2004, p. 1008102.
  4. F.D. Nicholson, J. V Sarbutt, The effect of boiling on the mass transfer of corrosion products in high temperature, high pressure water circuits, Corrosion 36 (1980) 1-9. https://doi.org/10.5006/0010-9312-36.1.1
  5. M. Zmitko, J. Kysela, J. Srank, T. Grygar, J. Subrt, Corrosion product deposits on cladding material, in: Water Chem. Corros. Control cladding Prim. Circuit components, IAEATECDOCS-1128, 1999, pp. 185-194.
  6. W.A. Byers, J. Deshon, Structure and chemistry of PWR crud, in: Int. Conf. Water Chem. Nucl. React. Syst. Conf. San Fr. USA, 2004, pp. 11-14.
  7. F. Franceschini, Andrew Godfrey, VERA Industry Applications, CASL Industry Council Meeting Charleston, South Carolina, 2017.
  8. W.A. Byers, J. Deshon, G.P. Gary, J.F. Small, J.B. Mcinvale, Crud metamorphosis at the Callaway plant, in: Proc. Inter. Conf. Water Chem. Nucl. React. Syst, 2006.
  9. P. Cohen, Heat and Mass Transfer for Boiling in Porous Deposits with Chimneys, 1974.
  10. A. Jaiswal, A Numerical Study on Parameters Affecting Boric Acid Transport and Chemistry within Fuel Corrosion Deposits during Crud Induced Power Shift, 2013.
  11. G. Sabol, J. Secker, J. Kormuth, H. Kunish, Rootcause Investigation of Axial Offset Anomalies, EPRI TR-108320, June, 1987.
  12. C. Pan, B.G. Jones, A.J. Machiels, Wick boiling performance in porous deposits with chimneys, in: AICHE/ANS Natl. Heat Transf. Conf. Symp. Multiph. Heat Transf. Denver, 1985.
  13. B.G. Park, S. Seo, S.J. Kim, J.H. Kim, S. Choi, Meso-scale multi-physics full coupling within porous CRUD deposits on nuclear fuel, J. Nucl. Mater. 512 (2018) 100-117. https://doi.org/10.1016/j.jnucmat.2018.10.002
  14. C. Pan, B.G. Jones, A.J. Machiels, Concentration levels of solutes in porous deposits with chimneys under wick boiling conditions, Nucl. Eng. Des. 99 (1987) 317-327. https://doi.org/10.1016/0029-5493(87)90130-0
  15. J. Henshaw, J.C. McGurk, H.E. Sims, A. Tuson, S. Dickinson, J. Deshon, A model of chemistry and thermal hydraulics in PWR fuel crud deposits, J. Nucl. Mater. 353 (2006) 1-11. https://doi.org/10.1016/j.jnucmat.2005.01.028
  16. I.U. Haq, Heat and Mass Transfer Analysis for Crud Coated PWR Fuel, 2011.
  17. M.P. Short, D. Hussey, B.K. Kendrick, T.M. Besmann, C.R. Stanek, S. Yip, Multiphysics modeling of porous CRUD deposits in nuclear reactors, J. Nucl. Mater. 443 (2013) 579-587. https://doi.org/10.1016/j.jnucmat.2013.08.014
  18. M. Jin, M. Short, Multiphysics modeling of two-phase film boiling within porous corrosion deposits, J. Comput. Phys. 316 (2016) 504-518. https://doi.org/10.1016/j.jcp.2016.03.013
  19. P.L. Frattini, J. Blok, S. Chauffriat, J. Sawick, J. Riddle, Axial offset anomaly: coupling PWR primary chemistry with core design, Nucl. Energy 40 (2001) 123-135. https://doi.org/10.1680/nuen.40.2.123.39952
  20. V.K. Dhir, Complete Numerical Simulation of Subcooled Flow Boiling in the Presence of Thermal and Chemical Interactions, Regents of the University of California, UCLA (US), 2003.
  21. B. Jones, Modeling and Thermal Performance Evaluation of Porous Crud Layers in Sub-cooled Boiling Region of Pwrs and Effects of Sub-cooled Nucleate Boiling on Anomalous Porous Crud Deposition on Fuel Pin Surfaces, University of Illinois at Urbana-Champaign (US), 2005.
  22. H.C. Shin, Solution for safety issue by using the code system for multi-physics reactor core engineering, in: Nuclear Safety & Security Information Conference 2018, Korea, (n.d).
  23. B. Kendrick, V. Petrov, D. Walker, A. Manera, CILC Studies with Comparative Analysis to Existing Plants, CASL-U-2013-0224-000, Los Alamos National Laboratory, 2013.
  24. B. Kendrick, C. Stanek, M. Short, MAMBA (MPO Advanced Model for Boron Analysis) Development for CASL: Update and Applications, 2014.
  25. D.J. Walter, A High Fidelity Multiphysics Framework for Modeling CRUD Deposition on PWR Fuel Rods, 2016.
  26. G. Wang, Improved Crud Heat Transfer Model for Dryout on Fuel Pin Surfaces at PWR Operating Conditions, 2009.
  27. P. Gierszewski, B. Mikic, N. Todreas, Property Correlations for Lithium, Sodium, Helium, FLiBe and Water in Fusion Reactor Applications (PFC-RR-80-12), Technical Report, Massachusetts Institute of Technology, Plasma Fusion Center, 1980.
  28. H. Watanabe, Thermal constants for Ni, NiO, MgO, MnO and CoO at low temperatures, Thermochim. Acta 218 (1993) 365-372. https://doi.org/10.1016/0040-6031(93)80436-E
  29. W.D. Kingery, J. Francl, R.L. Coble, T. Vasilos, Thermal conductivity: X, data for several pure oxide materials corrected to zero porosity, J. Am. Ceram. Soc. 37 (1954) 107-110. https://doi.org/10.1111/j.1551-2916.1954.tb20109.x
  30. J. Mo/lgaard, W.W. Smeltzer, Thermal conductivity of magnetite and hematite, J. Appl. Phys. 42 (1971) 3644-3647. https://doi.org/10.1063/1.1660785
  31. B.G. Park, I.H. Rhee, B.Y. Jung, K. Hong, Development of Water Chemistry Model in Crud Layer on Fuel Cladding, Korea Atomic Energy Research Institute, 2010.
  32. B. Yu, Analysis of flow in fractal porous media, Appl. Mech. Rev. 61 (2008).
  33. N.E. Todreas, M. Kazimi, Nuclear Systems Volume I: Thermal Hydraulic Fundamentals, CRC press, 2011.
  34. E.W. Lemmon, Thermophysical Properties of Fluid Systems, NIST Chem. Webb., 1998.
  35. S. Dickinson, J. Henshaw, J. McGurk, H. Sims, Modeling PWR Fuel Corrosion Product Deposition and Growth Processes: Final Report, EPRI, Palo Alto, CA, 2005, p. 1011743.
  36. J.H. Keenan, F.G. Keyes, Thermodynamic Properties of Steam, John Wiley and Sons, NewVork, Ny, 1963.
  37. Y. Shi, J. Xiao, S. Quan, M. Pan, R. Yuan, Fractal model for prediction of effective thermal conductivity of gas diffusion layer in proton exchange membrane fuel cell, J. Power Sources 185 (2008) 241-247. https://doi.org/10.1016/j.jpowsour.2008.07.010
  38. W.L. Marshall, E.U. Franck, Ion product of water substance, 0-1000 C, 1-10,000 bars New International Formulation and its background, J. Phys. Chem. Ref. Data 10 (1981) 295-304. https://doi.org/10.1063/1.555643
  39. J.H. Alexander, L. Luu, MULTEQ: Equilibrium of an Electrolytic Solution with Vapor-Liquid Partitioning and Precipitation: Volume 1, vol. 1, 1989. User's manual, Revision.
  40. O. Weres, Vapor pressure, speciation, and chemical activities in highly concentrated sodium borate solutions at 277 and 317℃, J. Solut. Chem. 24 (1995) 409-438. https://doi.org/10.1007/BF01004476
  41. W.A. Byers, W.T. Lindsay, R.H. Kunig, Solubility of lithium monoborate in high-temperature water, J. Solut. Chem. 29 (2000) 541-559. https://doi.org/10.1023/A:1005194129783