DOI QR코드

DOI QR Code

Investigation of single bubble behavior under rolling motions using multiphase MPS method on GPU

  • Basit, Muhammad Abdul (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Tian, Wenxi (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Chen, Ronghua (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Basit, Romana (School of Chemical Engineering and Technology, Xi'an Jiaotong University) ;
  • Qiu, Suizheng (School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Su, Guanghui (School of Nuclear Science and Technology, Xi'an Jiaotong University)
  • 투고 : 2020.07.05
  • 심사 : 2020.12.13
  • 발행 : 2021.06.25

초록

Study of single bubble behavior under rolling motions can prove useful for fundamental understanding of flow field inside the modern small modular nuclear reactors. The objective of the present study is to simulate the influence of rolling conditions on single rising bubble in a liquid using multiphase Moving Particle Semi-implicit (MPS) method. Rolling force term was added to 2D Navier-Stokes equations and a computer program was written using C language employing OpenACC to port the code to GPU. Computational results obtained were found to be in good agreement with the results available in literature. The impact of rolling parameters on trajectory and velocity of the rising bubble has been studied. It has been found that bubble rise velocity increases with rolling amplitude due to modification of flow field around the bubble. It has also been concluded that the oscillations of free surface, caused by rolling, influence the bubble trajectory. Furthermore, it has been discovered that smaller vessel width reduces the impact of rolling motions on the rising bubble. The effect of liquid viscosity on bubble rising under rolling was also investigated and it was found that effects of rolling became more pronounced with the increase of liquid viscosity.

키워드

과제정보

The present research is funded by the National Natural Science Foundation of China (No. U1967203, No. 11875217) and the Young Elite Scientists Sponsorship Program by CAST (2018QNRC001), China. The authors would also like to acknowledge the PhD funding support provided by Higher Education Commission (HEC), Pakistan. Authors are thankful to Mr. Mathew Colgrove of NVIDIA Corporation for his valuable suggestions for implementation of OpenACC in MMPS code.

참고문헌

  1. B.H. Yan, Review of the nuclear reactor thermal hydraulic research in ocean motions, Nucl. Eng. Des. 313 (2017) 370-385, https://doi.org/10.1016/j.nucengdes.2016.12.041.
  2. G.E. Thorncroft, J.F. Klausnera, R. Mei, An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling, Int. J. Heat Mass Tran. 41 (1998) 3857-3871, https://doi.org/10.1016/S0017-9310(98)00092-1.
  3. A.K. Nayak, P.K. Vijayan, Flow instabilities in boiling two-phase natural circulation systems: a review, Sci. Technol. Nucl. Install. (2008) 1-15, https://doi.org/10.1155/2008/573192, 2008.
  4. S. chao Tan, G.H. Su, P. zhen Gao, Experimental and theoretical study on single-phase natural circulation flow and heat transfer under rolling motion condition, Appl. Therm. Eng. 29 (2009) 3160-3168, https://doi.org/10.1016/j.applthermaleng.2009.04.019.
  5. T. Okawa, T. Tanaka, I. Kataoka, M. Mori, Temperature effect on single bubble rise characteristics in stagnant distilled water, Int. J. Heat Mass Tran. 46 (2003) 903-913, https://doi.org/10.1016/S0017-9310(02)00345-9.
  6. J.R. Grace, T. Wairegi, T.H. Nguyen, Shapes and velocities of single drops and bubbles moving freely through immiscible liquids, Trans. Inst. Chem. Eng. 54 (1976) 167-173.
  7. D. Bhaga, M.E. Weber, Bubbles in viscous liquids: shapes, wakes and velocities, J. Fluid Mech. 105 (1981) 61-85, https://doi.org/10.1017/S002211208100311X.
  8. G. Jin, C. Yan, L. Sun, D. Xing, B. Zhou, Void fraction of dispersed bubbly flow in a narrow rectangular channel under rolling conditions, Prog. Nucl. Energy 70 (2014) 256-265, https://doi.org/10.1016/j.pnucene.2013.10.012.
  9. G. Jin, C. Yan, L. Sun, D. Xing, Effect of rolling motion on transient flow resistance of two-phase flow in a narrow rectangular duct, Ann. Nucl. Energy 64 (2014) 135-143, https://doi.org/10.1016/j.anucene.2013.09.035.
  10. D. Tian, C. Yan, L. Sun, G. Liu, Local interfacial parameter distribution for two-phase flow under rolling conditions using a four-sensor optical probe, Ann. Nucl. Energy 66 (2014) 124-132, https://doi.org/10.1016/j.anucene.2013.12.006.
  11. C. Yan, C. Yan, L. Sun, Q. Tian, Experimental and theoretical analysis of bubble rising velocity in a 3 × 3 rolling rod bundle under stagnant condition, Ann. Nucl. Energy 72 (2014) 471-481, https://doi.org/10.1016/j.anucene.2014.06.028.
  12. S. Li, S. Tan, C. Xu, P. Gao, Visualization study of bubble behavior in a sub-cooled flow boiling channel under rolling motion, Ann. Nucl. Energy 76 (2015) 390-400, https://doi.org/10.1016/j.anucene.2014.10.004.
  13. G. Hong, X. Yan, Y.H. Yang, T.Z. Xie, J.J. Xu, Bubble departure size in forced convective subcooled boiling flow under static and heaving conditions, Nucl. Eng. Des. 247 (2012) 202-211, https://doi.org/10.1016/j.nucengdes.2012.03.008.
  14. J.H. Wei, L.M. Pan, D.Q. Chen, H. Zhang, J.J. Xu, Y.P. Huang, Numerical simulation of bubble behaviors in subcooled flow boiling under swing motion, Nucl. Eng. Des. 241 (2011) 2898-2908, https://doi.org/10.1016/j.nucengdes.2011.05.008.
  15. Q. Zeng, J. Cai, Three-dimension simulation of bubble behavior under nonlinear oscillation, Ann. Nucl. Energy 63 (2014) 680-690, https://doi.org/10.1016/j.anucene.2013.09.020.
  16. C. Chen, M. Wang, X. Zhao, H. Ju, X. Wang, W. Tian, S. Qiu, G. Su, Numerical study on the single bubble rising behaviors under rolling conditions, Nucl. Eng. Des. 349 (2019) 183-192, https://doi.org/10.1016/j.nucengdes.2019.04.039.
  17. S. Koshizuka, Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng. 123 (1996) 421-434, https://doi.org/10.13182/NSE96-A24205.
  18. H.Y. Yoon, S. Koshizuka, Y. Oka, A particle-gridless hybrid method for incompressible flows, Int. J. Numer. Methods Fluid. 30 (1999) 407-424, https://doi.org/10.1002/(SICI)1097-0363(19990630)30:4<407::AIDFLD846>3.0.
  19. G. Duan, B. Chen, S. Koshizuka, H. Xiang, Stable multiphase moving particle semi-implicit method for incompressible interfacial flow, Comput. Methods Appl. Mech. Eng. 318 (2017) 636-666, https://doi.org/10.1016/j.cma.2017.01.002.
  20. J. Zuo, W. Tian, R. Chen, S. Qiu, G. Su, Two-dimensional numerical simulation of single bubble rising behavior in liquid metal using moving particle semiimplicit method, Prog. Nucl. Energy 64 (2013) 31-40, https://doi.org/10.1016/j.pnucene.2012.12.003.
  21. W. Tian, Y. Ishiwatari, S. Ikejiri, M. Yamakawa, Y. Oka, Numerical simulation on void bubble dynamics using moving particle semi-implicit method, Nucl. Eng. Des. 239 (2009) 2382-2390, https://doi.org/10.1016/j.nucengdes.2009.06.018.
  22. X. Li, W. Tian, R. Chen, G. Su, S. Qiu, Numerical simulation on single Taylor bubble rising in LBE using moving particle method, Nucl. Eng. Des. 256 (2013) 227-234, https://doi.org/10.1016/j.nucengdes.2012.12.018.
  23. W. Tian, Y. Ishiwatari, S. Ikejiri, M. Yamakawa, Y. Oka, Numerical computation of thermally controlled steam bubble condensation using Moving Particle Semi-implicit (MPS) method, Ann. Nucl. Energy 37 (2010) 5-15, https://doi.org/10.1016/j.anucene.2009.10.011.
  24. M.A. Basit, W. Tian, R. Chen, C. Chen, S. Qiu, G. Su, Numerical study of bubble rising in quiescent liquid under rolling motion conditions using MPS - MAFL method, Ann. Nucl. Energy 133 (2019), https://doi.org/10.1016/j.anucene.2019.05.045.
  25. M.A. Basit, W. Tian, R. Chen, S. Qiu, G. Su, Numerical study of laminar flow and friction characteristics in narrow channels under rolling conditions using MPS method, Nucl. Eng. Technol. (2019), https://doi.org/10.1016/j.net.2019.06.001.
  26. K. Guo, R. Chen, S. Qiu, W. Tian, G. Su, An improved Multiphase Moving Particle Semi-implicit method in bubble rising simulations with large density ratios, Nucl. Eng. Des. 340 (2018) 370-387, https://doi.org/10.1016/j.nucengdes.2018.10.006.
  27. K. Guo, R. Chen, Y. Li, W. Tian, G. Su, S. Qiu, Numerical simulation of Rayleigh-Taylor Instability with periodic boundary condition using MPS method, Prog. Nucl. Energy 109 (2018) 130-144, https://doi.org/10.1016/j.pnucene.2018.08.008.
  28. G. Li, J. Gao, P. Wen, Q. Zhao, J. Wang, J. Yan, A. Yamaji, A review on MPS method developments and applications in nuclear engineering, Comput. Methods Appl. Mech. Eng. 367 (2020) 113166, https://doi.org/10.1016/j.cma.2020.113166.
  29. R. Chen, C. Dong, K. Guo, W. Tian, S. Qiu, G.H. Su, Current achievements on bubble dynamics analysis using MPS method, Prog. Nucl. Energy 118 (2020) 103057, https://doi.org/10.1016/j.pnucene.2019.103057.
  30. K. Hegeman, N.A. Carr, G.S.P. Miller, Particle-Based Fluid Simulation on the GPU, 2006, pp. 228-235, https://doi.org/10.1007/11758549_35.
  31. D. Taniguchi, L.M. Sato, L.Y. Cheng, EXPLICIT MOVING PARTICLE SIMULATION METHOD ON GPU CLUSTERS, 2014, pp. 1155-1168, https://doi.org/10.5151/meceng-wccm2012-18291.
  32. S. Chandrasekaran, G. Juckeland, OpenACCTM for Programmers Concepts and Strategies, first ed., 2018. Pearson Education, Inc.
  33. G. Duan, S. Koshizuka, B. Chen, A contoured continuum surface force model for particle methods, J. Comput. Phys. 298 (2015) 280-304, https://doi.org/10.1016/j.jcp.2015.06.004.
  34. J.A. Meijerink, H.A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comput. 31 (1977) 148, https://doi.org/10.2307/2005786.
  35. E.V. Lewis, The motion of ships in waves, in: Princ. Nav. Archit., Society of Naval Architects and Marine Engineers, Newyork, 1967.
  36. R.H. Chen, W.X. Tian, G.H. Su, S.Z. Qiu, Y. Ishiwatari, Y. Oka, Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid, Chem. Eng. Sci. 66 (2011) 5055-5063, https://doi.org/10.1016/j.ces.2011.06.058.
  37. O. Miyagi, The motion of an air bubble rising in water, London, Edinburgh, Dublin Philos. Mag. J. Sci. 50 (1925) 112-140, https://doi.org/10.1080/14786442508634721.
  38. H.Y. Yoon, S. Koshizuka, Y. Oka, Direct calculation of bubble growth, departure, and rise in nucleate pool boiling, Int. J. Multiphas. Flow 27 (2001) 277-298, https://doi.org/10.1016/S0301-9322(00)00023-9.