DOI QR코드

DOI QR Code

Diagnostic methods applied to Esfahan light water subcritical reactor (ELWSCR)

  • Received : 2020.10.05
  • Accepted : 2021.01.23
  • Published : 2021.07.25

Abstract

In this work, Esfahan light water subcritical reactor (ELWSCR) is analysed using experimental and theoretical diagnostic methods. Important neutronic parameters of the system such as prompt neutron lifetime, delayed neutron fraction, prompt neutron decay constant, negative reactivity of the core, fuel and moderator temperature coefficient of reactivity, and overall and local void coefficient of reactivity are estimated. Also, neutron flux distribution, reflector saving, water level effect, and lattice pitch of the core including operating point of the facility are studied in details. Theoretical results are calculated by MCNPX and measurements are performed utilizing zero power reactor noise method. Detailed descriptions of the results are explained in the text.

Keywords

References

  1. C.-M. Persson, Reactivity Determination and Monte Carlo Simulation of the Subcritical Reactor Experiment-Yalina, Department of Nuclear and Reactor Physics, Royal Institute of Technology, Stockholm, 2005, p. 16.
  2. C.M. Persson, P. Seltborg, A. Ahlander, W. Gudowski, et al., Analysis of reactivity determination methods in the subcritical experiment-Yalina, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 554 (1-3) (2005) 374-383. https://doi.org/10.1016/j.nima.2005.07.058
  3. L. Snoj, A. Kavcic, G. Zerovnik, M. Ravnik, Calculation of kinetic parameters for mixed TRIGA cores with Monte Carlo, Ann. Nucl. Energy 37 (2) (2010) 223-229. https://doi.org/10.1016/j.anucene.2009.10.020
  4. D.B. Pelowitz, MCNPXTM 2.6.0, User's Manual, Version 2.6.0, Los Alamos National Laboratory, LA-CP-07-1473, 2008.
  5. M. Arkani, et al., Prompt neutron decay constant in esfahan light water subcritical reactor (ELWSCR): comparison of rossi-α experiment and Monte Carlo simulation, Iranian J. Nucl. Sci. Technol. 80 (2017) 18-24 (Published in Persian).
  6. M. Arkani, et al., Measurement of prompt neutron decay constant of Esfahan light water subcritical reactor utilizing Feynman-α method, Iranian J. Nucl. Sci. Technol. 76 (2016) 1-7 (Published in Persian).
  7. N. Nassiri Mofakham, et al., LWSCR reactor parameters determination based on calculation and experimental results, Iranian J. Nucl. Sci. Technol. 60 (1) (2012) 55-60 (Published in Persian).
  8. J. Sadeghzadeh, Measurement of absolute neutron flux in LWSCR based on the nuclear track method, Ann. Nucl. Energy 45 (2012) 166-169. https://doi.org/10.1016/j.anucene.2011.07.031
  9. J.A. Thie, Reactor Noise, Rowman and Littlefield Inc., New York, 1963.
  10. M.M.R. Williams, Random Process in Nuclear Reactors, Pergamom Press, 1974.
  11. R.E. Uhrig, Random Noise Techniques in Nuclear Reactor Systems, The Ronald Press Company, New York, 1970.
  12. R.P. Feynman, F. de Hoffmann, R. Serber, Dispersion of the neutron emission in U-235 fission, J. Nucl. Energy 3 (1956) 64. https://doi.org/10.1016/0891-3919(56)90042-0
  13. I. Pazsit, Y. Yamane, The variance-to-mean ratio in subcritical systems driven by a spallation source, Ann. Nucl. Energy 25 (1998) 667. https://doi.org/10.1016/S0306-4549(97)00117-5
  14. I. Pazsit, Y. Yamane, The backward theory of Feynman- and Rossi-α methods with multiple emission sources, Nucl. Sci. Eng. 133 (1999) 269. https://doi.org/10.13182/NSE99-A2087
  15. M. Arkani, H. Khalafi, N. Vosoughi, Development of an embedded FPGA-based data acquisition system dedicated to zero power reactor noise experiments, Metrol. Meas. Syst. XXI (3) (2014) 433-446.
  16. M. Arkani, H. Khalafi, N. Vosoughi, S. Khakshournia, A FPGA based time analyser for stochastic methods in experimental physics, Instrum. Exp. Tech. 58 (3) (2015c) 350-358. https://doi.org/10.1134/S002044121503001X
  17. M.M. Bretscher, Evaluation of Reactor Kinetic Parameters without the Need for Perturbation Codes, Argonne National Laboratory, Argonne, Illinois USA, 1997.
  18. T. Goorley, et al., Features of MCNP6, Ann. Nucl. Energy 87 (2) (2016) 772-783. https://doi.org/10.1016/j.anucene.2015.02.020
  19. G.R. Keepin, Physics of Nuclear Kinetics, Addison Wesley Pub. Company, Inc., Reading, Massachusetts, USA, 1965.