Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT: Ministry of Science and ICT) (No. 2017M2A8A4017932). This research was also supported by the 2019 scientific promotion program funded by Jeju National University.
References
- A. Suthar, M. Kumar, Critical accident scenario analysis of pressurized water reactor, in: ICTEA: International Conference on Thermal Engineering May 7, 2019.
- X. Gaus-Liu, G. Albrecht, T. Cron, B. Fluhrer, J. Foit, H. Madakoro, R. Stangle, M. Vervoortz, T. Wenz, Analysis of Severe Accidents, Annual Report 2017- 2018 of the Institute for Nuclear and Energy Technologies (KIT Scientific Reports; 7756), vol. 7756, 2019, pp. 29-36.
- J.J. Herbst, R.G. Sider, R.E. Jaquith, C.H. Meijer, Nuclear Plant Safety Evaluation System, Combustion Engineering Inc, 1986. U.S. Patent 4,632,802.
- S.G. Kim, Y.G. No, P.H. Seong, Prediction of severe accident occurrence time using support vector machines, Nuclear Engineering and Technology 47 (2015) 74-84. https://doi.org/10.1016/j.net.2014.10.001
- M.G. Na, S.H. Shin, S.M. Lee, D.W. Jung, S.P. Kim, J.H. Jeong, B.C. Lee, Prediction of major transient scenarios for severe accidents of nuclear power plants, IEEE Trans. Nucl. Sci. 51 (2004) 313-321. https://doi.org/10.1109/TNS.2004.825090
- Y.G. No, J.H. Kim, M.G. Na, D.H. Lim, K.I. Ahn, Monitoring severe accidents using AI techniques, Nuclear Engineering and Technology 44 (2012) 393-404. https://doi.org/10.5516/NET.04.2012.512
- D. Miljkovic, Fault detection methods: a literature survey, in: 2011 Proceedings of the 34th International Convention MIPRO, Opatija, May 23, 2011.
- S.S. Tayarani-Bathaie, Z.N.S. Vanini, K. Khorasani, Dynamic neural networkbased fault diagnosis of gas turbine engines, Neurocomputing 125 (2014) 153-165. https://doi.org/10.1016/j.neucom.2012.06.050
- D. Zhang, Q.G. Wang, L. Yu, H. Song, Fuzzy-model-based fault detection for a class of nonlinear systems with networked measurements, IEEE Trans Instrum Meas 62 (2013) 3148-3159. https://doi.org/10.1109/TIM.2013.2272865
- J. Chen, C. Roberts, P. Weston, Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems, Contr. Eng. Pract. 16 (2008) 585-596. https://doi.org/10.1016/j.conengprac.2007.06.007
- B. Fan, Z. Du, X. Jin, X. Yang, Y. Guo, A hybrid FDD strategy for local system of AHU based on artificial neural network and wavelet analysis, Build. Environ. 45 (2010) 2698-2708. https://doi.org/10.1016/j.buildenv.2010.05.031
- J.C.M. Oliveira, K.V. Pontes, I. Sartori, M. Embirucu, Fault detection and diagnosis in dynamic systems using weightless neural networks, Expert Syst. Appl. 84 (2017) 200-219. https://doi.org/10.1016/j.eswa.2017.05.020
- F. Jia, Y. Lei, L. Guo, J. Lin, S. Xing, A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines, Neurocomputing 272 (2017) 619-628. https://doi.org/10.1016/j.neucom.2017.07.032
- Y. Liu, W. Ni, Z. Ge, Fuzzy decision fusion system for fault classification with analytic hierarchy process approach, Chemometr. Intell. Lab. Syst. 166 (2017) 61-68. https://doi.org/10.1016/j.chemolab.2017.05.012
- B. Ozyurt, A. Kandel, A hybrid hierarchical neural network-fuzzy expert system approach to chemical process fault diagnosis, Fuzzy Set Syst. 83 (1996) 11-25. https://doi.org/10.1016/0165-0114(95)00314-2
- C.K. Lau, K. Ghosh, M.A. Hussain, C.C. Hassan, Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS, Chemometr. Intell. Lab. Syst. 120 (2013) 1-14. https://doi.org/10.1016/j.chemolab.2012.10.005
- I.S. Lee, J.T. Kim, J.W. Lee, D.Y. Lee, K.Y. Kim, Model-based fault detection and isolation method using ART2 neural network, Int. J. Intell. Syst. 18 (2003) 1087-1100. https://doi.org/10.1002/int.10134
- Y. Bar-Shalom, X.R. Li, Estimation and Tracking: Principles, Techniques and Softwares, Artech House, lnc, Norwood, MA, 1993.
- X.R. Li, Y. Zhang, Multiple model estimation with variable structure, IEEE Trans. Automat. Contr. 41 (1996) 478-493. https://doi.org/10.1109/9.489270
- B.S. Kim, U.Z. Ijaz, J.H. Kim, M.C. Kim, S. Kim, K.Y. Kim, Nonstationary phase boundary estimation in electrical impedance tomography based on the interacting multiple model scheme, Meas. Sci. Technol. 18 (2006) 62. https://doi.org/10.1088/0957-0233/18/1/008
- M.J. Peng, H. Wang, S.S. Chen, G.L. Xia, Y.K. Liu, X. Yang, A. Ayodeji, An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant, Nuclear Engineering and Technology 50 (2018) 396-410. https://doi.org/10.1016/j.net.2017.11.014
- Z. Zhang, J. Chen, Fault detection and diagnosis based on particle filters combined with interactive multiple-model estimation in dynamic process systems, ISA Trans. 85 (2019) 247-261. https://doi.org/10.1016/j.isatra.2018.10.015
- S.M. Kargar, K. Salahshoor, M.J. Yazdanpanah, Integrated nonlinear model predictive fault tolerant control and multiple model based fault detection and diagnosis, Chem. Eng. Res. Des. 92 (2014) 340-349. https://doi.org/10.1016/j.cherd.2013.07.028
- B. Pourbabaee, N. Meskin, K. Khorasani, Multiple-model based sensor fault diagnosis using hybrid Kalman filter approach for nonlinear gas turbine engines, in: 2013 American Control Conference (ACC), Washington, DC, USA, June 17-19, 2013.
- T. Hsiao, M.C. Weng, A hierarchical multiple-model approach for detection and isolation of robotic actuator faults, Robot. Autonom. Syst. 60 (2012) 154-166. https://doi.org/10.1016/j.robot.2011.10.003
- A. Gelb, Applied Optimal Estimation, MIT Press, 1974.
- A.K. Khambampati, A. Rashid, U.Z. Ijaz, S. Kim, M. Soleimani, K.Y. Kim, Unscented Kalman filter approach to tracking a moving interfacial boundary in sedimentation processes using three-dimensional electrical impedance tomography, Phil. Trans. Math. Phys. Eng. Sci. 367 (2009) 3095-3120.
- B.S. Kim, M.C. Kim, S. Kim, K.Y. Kim, Nonstationary electrical impedance tomography with the interacting multiple model scheme, Meas. Sci. Technol. 15 (2004) 2113. https://doi.org/10.1088/0957-0233/15/10/022
- K.Y. Kim, B.S. Kim, M.C. Kim, S. Kim, D. Isaacson, J.C. Newell, Dynamic electrical impedance imaging with the interacting multiple model scheme, Physiol. Meas. 26 (2005) S217. https://doi.org/10.1088/0967-3334/26/2/021
- Y.J. Kim, W.J. Choi, S.J. Kim, Efficacy assessment of independent severe accident mitigation measures in OPR1000 using MELCOR code, J. Nucl. Sci. Technol. 54 (2017) 89-100. https://doi.org/10.1080/00223131.2016.1213670