DOI QR코드

DOI QR Code

An interactive multiple model method to identify the in-vessel phenomenon of a nuclear plant during a severe accident from the outer wall temperature of the reactor vessel

  • Khambampati, Anil Kumar (Department of Electronic Engineering, Jeju National University) ;
  • Kim, Kyung Youn (Department of Electronic Engineering, Jeju National University) ;
  • Hur, Seop (Research Div. of Autonomous Control, Korea Atomic Energy Research Institute) ;
  • Kim, Sung Joong (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Jung Taek (Research Div. of Autonomous Control, Korea Atomic Energy Research Institute)
  • Received : 2020.03.26
  • Accepted : 2020.08.06
  • Published : 2021.02.25

Abstract

Nuclear power plants contain several monitoring systems that can identify the in-vessel phenomena of a severe accident (SA). Though a lot of analysis and research is carried out on SA, right from the development of the nuclear industry, not all the possible circumstances are taken into consideration. Therefore, to improve the efficacy of the safety of nuclear power plants, additional analytical studies are needed that can directly monitor severe accident phenomena. This paper presents an interacting multiple model (IMM) based fault detection and diagnosis (FDD) approach for the identification of in-vessel phenomena to provide the accident propagation information using reactor vessel (RV) out-wall temperature distribution during severe accidents in a nuclear power plant. The estimation of wall temperature is treated as a state estimation problem where the time-varying wall temperature is estimated using IMM employing three multiple models for temperature evolution. From the estimated RV out-wall temperature and rate of temperature, the in-vessel phenomena are identified such as core meltdown, corium relocation, reactor vessel damage, reflooding, etc. We tested the proposed method with five different types of SA scenarios and the results show that the proposed method has estimated the outer wall temperature with good accuracy.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT: Ministry of Science and ICT) (No. 2017M2A8A4017932). This research was also supported by the 2019 scientific promotion program funded by Jeju National University.

References

  1. A. Suthar, M. Kumar, Critical accident scenario analysis of pressurized water reactor, in: ICTEA: International Conference on Thermal Engineering May 7, 2019.
  2. X. Gaus-Liu, G. Albrecht, T. Cron, B. Fluhrer, J. Foit, H. Madakoro, R. Stangle, M. Vervoortz, T. Wenz, Analysis of Severe Accidents, Annual Report 2017- 2018 of the Institute for Nuclear and Energy Technologies (KIT Scientific Reports; 7756), vol. 7756, 2019, pp. 29-36.
  3. J.J. Herbst, R.G. Sider, R.E. Jaquith, C.H. Meijer, Nuclear Plant Safety Evaluation System, Combustion Engineering Inc, 1986. U.S. Patent 4,632,802.
  4. S.G. Kim, Y.G. No, P.H. Seong, Prediction of severe accident occurrence time using support vector machines, Nuclear Engineering and Technology 47 (2015) 74-84. https://doi.org/10.1016/j.net.2014.10.001
  5. M.G. Na, S.H. Shin, S.M. Lee, D.W. Jung, S.P. Kim, J.H. Jeong, B.C. Lee, Prediction of major transient scenarios for severe accidents of nuclear power plants, IEEE Trans. Nucl. Sci. 51 (2004) 313-321. https://doi.org/10.1109/TNS.2004.825090
  6. Y.G. No, J.H. Kim, M.G. Na, D.H. Lim, K.I. Ahn, Monitoring severe accidents using AI techniques, Nuclear Engineering and Technology 44 (2012) 393-404. https://doi.org/10.5516/NET.04.2012.512
  7. D. Miljkovic, Fault detection methods: a literature survey, in: 2011 Proceedings of the 34th International Convention MIPRO, Opatija, May 23, 2011.
  8. S.S. Tayarani-Bathaie, Z.N.S. Vanini, K. Khorasani, Dynamic neural networkbased fault diagnosis of gas turbine engines, Neurocomputing 125 (2014) 153-165. https://doi.org/10.1016/j.neucom.2012.06.050
  9. D. Zhang, Q.G. Wang, L. Yu, H. Song, Fuzzy-model-based fault detection for a class of nonlinear systems with networked measurements, IEEE Trans Instrum Meas 62 (2013) 3148-3159. https://doi.org/10.1109/TIM.2013.2272865
  10. J. Chen, C. Roberts, P. Weston, Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems, Contr. Eng. Pract. 16 (2008) 585-596. https://doi.org/10.1016/j.conengprac.2007.06.007
  11. B. Fan, Z. Du, X. Jin, X. Yang, Y. Guo, A hybrid FDD strategy for local system of AHU based on artificial neural network and wavelet analysis, Build. Environ. 45 (2010) 2698-2708. https://doi.org/10.1016/j.buildenv.2010.05.031
  12. J.C.M. Oliveira, K.V. Pontes, I. Sartori, M. Embirucu, Fault detection and diagnosis in dynamic systems using weightless neural networks, Expert Syst. Appl. 84 (2017) 200-219. https://doi.org/10.1016/j.eswa.2017.05.020
  13. F. Jia, Y. Lei, L. Guo, J. Lin, S. Xing, A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines, Neurocomputing 272 (2017) 619-628. https://doi.org/10.1016/j.neucom.2017.07.032
  14. Y. Liu, W. Ni, Z. Ge, Fuzzy decision fusion system for fault classification with analytic hierarchy process approach, Chemometr. Intell. Lab. Syst. 166 (2017) 61-68. https://doi.org/10.1016/j.chemolab.2017.05.012
  15. B. Ozyurt, A. Kandel, A hybrid hierarchical neural network-fuzzy expert system approach to chemical process fault diagnosis, Fuzzy Set Syst. 83 (1996) 11-25. https://doi.org/10.1016/0165-0114(95)00314-2
  16. C.K. Lau, K. Ghosh, M.A. Hussain, C.C. Hassan, Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS, Chemometr. Intell. Lab. Syst. 120 (2013) 1-14. https://doi.org/10.1016/j.chemolab.2012.10.005
  17. I.S. Lee, J.T. Kim, J.W. Lee, D.Y. Lee, K.Y. Kim, Model-based fault detection and isolation method using ART2 neural network, Int. J. Intell. Syst. 18 (2003) 1087-1100. https://doi.org/10.1002/int.10134
  18. Y. Bar-Shalom, X.R. Li, Estimation and Tracking: Principles, Techniques and Softwares, Artech House, lnc, Norwood, MA, 1993.
  19. X.R. Li, Y. Zhang, Multiple model estimation with variable structure, IEEE Trans. Automat. Contr. 41 (1996) 478-493. https://doi.org/10.1109/9.489270
  20. B.S. Kim, U.Z. Ijaz, J.H. Kim, M.C. Kim, S. Kim, K.Y. Kim, Nonstationary phase boundary estimation in electrical impedance tomography based on the interacting multiple model scheme, Meas. Sci. Technol. 18 (2006) 62. https://doi.org/10.1088/0957-0233/18/1/008
  21. M.J. Peng, H. Wang, S.S. Chen, G.L. Xia, Y.K. Liu, X. Yang, A. Ayodeji, An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant, Nuclear Engineering and Technology 50 (2018) 396-410. https://doi.org/10.1016/j.net.2017.11.014
  22. Z. Zhang, J. Chen, Fault detection and diagnosis based on particle filters combined with interactive multiple-model estimation in dynamic process systems, ISA Trans. 85 (2019) 247-261. https://doi.org/10.1016/j.isatra.2018.10.015
  23. S.M. Kargar, K. Salahshoor, M.J. Yazdanpanah, Integrated nonlinear model predictive fault tolerant control and multiple model based fault detection and diagnosis, Chem. Eng. Res. Des. 92 (2014) 340-349. https://doi.org/10.1016/j.cherd.2013.07.028
  24. B. Pourbabaee, N. Meskin, K. Khorasani, Multiple-model based sensor fault diagnosis using hybrid Kalman filter approach for nonlinear gas turbine engines, in: 2013 American Control Conference (ACC), Washington, DC, USA, June 17-19, 2013.
  25. T. Hsiao, M.C. Weng, A hierarchical multiple-model approach for detection and isolation of robotic actuator faults, Robot. Autonom. Syst. 60 (2012) 154-166. https://doi.org/10.1016/j.robot.2011.10.003
  26. A. Gelb, Applied Optimal Estimation, MIT Press, 1974.
  27. A.K. Khambampati, A. Rashid, U.Z. Ijaz, S. Kim, M. Soleimani, K.Y. Kim, Unscented Kalman filter approach to tracking a moving interfacial boundary in sedimentation processes using three-dimensional electrical impedance tomography, Phil. Trans. Math. Phys. Eng. Sci. 367 (2009) 3095-3120.
  28. B.S. Kim, M.C. Kim, S. Kim, K.Y. Kim, Nonstationary electrical impedance tomography with the interacting multiple model scheme, Meas. Sci. Technol. 15 (2004) 2113. https://doi.org/10.1088/0957-0233/15/10/022
  29. K.Y. Kim, B.S. Kim, M.C. Kim, S. Kim, D. Isaacson, J.C. Newell, Dynamic electrical impedance imaging with the interacting multiple model scheme, Physiol. Meas. 26 (2005) S217. https://doi.org/10.1088/0967-3334/26/2/021
  30. Y.J. Kim, W.J. Choi, S.J. Kim, Efficacy assessment of independent severe accident mitigation measures in OPR1000 using MELCOR code, J. Nucl. Sci. Technol. 54 (2017) 89-100. https://doi.org/10.1080/00223131.2016.1213670