DOI QR코드

DOI QR Code

Preliminary analyses on decontamination factors during pool scrubbing with bubble size distributions obtained from EPRI experiments

  • Lee, Yoonhee (Department of Nuclear Safety Research, Korea Institute of Nuclear Safety) ;
  • Cho, Yong Jin (Department of Nuclear Safety Research, Korea Institute of Nuclear Safety) ;
  • Ryu, Inchul (PSA& PSR Business Group, Level 2 Probabilistic Risk Assessment, KEPCO Engineering & Construction Company Inc.)
  • Received : 2020.06.03
  • Accepted : 2020.08.12
  • Published : 2021.02.25

Abstract

In this paper, from a review of the size distribution of the bubbles during pool scrubbing obtained from experiments by EPRI, we apply the bubble size distributions to analyses on the decontamination factors of pool scrubbing via I-COSTA (In-Containment Source Term Analysis). We perform sensitivity studies of the bubble size on the various mechanisms of deposition of aerosol particles in pool scrubbing. We also perform sensitivity studies on the size distributions of the bubbles depending on the diameters at the nozzle exit, the molecular weights of non-condensable gases in the carrier gases, and the steam fractions of the carrier gases. We then perform analyses of LACE-ESPANA experiments and compare the numerical ~ results to those from SPARC-90 and experimental results in order to show the effect of the bubble size distributions.

Keywords

Acknowledgement

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using financial resources granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 1805001).

References

  1. H.-J. Allein, A. Auviene, J. Ball, S. Guntay, L. Herranz, A. Hidaka, A. Jones, M. Kissane, D. Power, G. Weber, State-of-the-art Report on Nuclear Aerosol, Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA), Boulogne-Billancourt, France, 2009, p. 5. NEA/CSNI/R(2009.
  2. D.A. Powers, J.E. Brockmann, A.W. Shiver, VANESA : A Mechanistic Model of Radionuclide Release and Aerosol Generation during Core Debris Interactions with Concrete, Sandia National Laboratories, Albuquerque, NM, 1986. NUREG/CR-4308, SAND85-1370.
  3. S. Gupta, Main insights and perspectives of pool scrubbing research: examples of Thai and NUGENIA/IPRESCA, In : PASSAM Final Workshop on Source Term Mitigation of Severe Accidents, Paris, France, February 28- March 1, 2017.
  4. M. Yu, Program of work and overall work steps of ARC-F project, In : The First Meeting of PRG of the OECD/NEA ARC-F Project, Boulogne-Billancourt, France, January 22-23, 2019.
  5. M. Escudero, M.J. Marcos, M. Swiderska-Kowalczyk, M. Martin, J. Lopez, State-of-the-art review on fission products aerosol pool scrubbing under severe accident conditions, in: Nuclear Science and Technology, European Commission Report EUR 16241 En. Official Publications of the European Communities ECSC-EC-EAEC, Brussels, Belgium, 1995.
  6. L.E. Herranz, M.J. Escudero, V. Peyres, J. Polo, J. Lopez, Review and Assessment of Pool Scrubbing Models, CIEMAT, Madrid, Spain, 1996. ISSN 1135-9420.
  7. A.T. Wassel, A.F. Mills, D.C. Bugby, Analysis of radionuclide retention in water pools, Nucl. Eng. Des. 90 (1985) 87-104. https://doi.org/10.1016/0029-5493(85)90033-0
  8. D.D. Paul, L.J. Flanigan, R.A. Cudnik, J.C. Cunnane, R.P. Coller, Radionuclide Scrubbing in Water Pools Volume 1 : Gas-Liquid Hydrodynamics, Electric Power Research Institute, Palo Alto, CA, 1985. NP-4154.
  9. D.D. Paul, L.J. Flanigan, R.A. Cudnik, J.C. Cunnane, R.P. Coller, Radionuclide Scrubbing in Water Pools Volume 2 : Gas-Liquid Hydrodynamics with FullScale Downcomer and Horizontal Vent, Electric Power Research Institute, Palo Alto, CA, 1991. NP-4154.
  10. P.C. Owczarski, K.W. Burk, SPARC-90: A Code for Calculating Fission Product Capture in Suppression Pools, U.S. Nuclear Regulatory Commission, Washington, DC., USA, 1991. NUREG/CR-5765, TI92 003256.
  11. S.A. Ramsdale, S. Guentay, H.G. Friederichs, BUSCA-JUN91 Reference Manual, Paul Scherrer Institut, Villigen, Switzerland, 1995. PSI Bericht Nr. 95-05.
  12. R.O. Gauntt, et al., MELCOR Computer Code Manuals Vol. 2: Reference Manual, Version 1.8.6, Sandia National Laboratories, Albuquerque, NM, USA, 2001. NUREG/CR-6119.
  13. M.J. Marcos, F.J. Gomez, I. Melches, M. Martin, J. Lopez, LACE-ESPA NA~ Experimental Programme on the Retention of Aerosols in Water Pool, Final Reports, CIEMAT, Madrid, Spain, 1994. ITN/TS-08/DP-93.
  14. A. Dehbi, D. Suckow, S. Guentay, Aerosol retention in low-subcooling pools under realistic accident conditions, Nucl. Eng. Des. 203 (2001) 229-241. https://doi.org/10.1016/S0029-5493(00)00343-5
  15. T. Albiol, L. Herranz, E. Riera, C. Dailbart, T. Lind, A. Del Corno, T. Karkela, N. Losch, B. Azambre, C. Mun, L. Cantrel, Main results of the European PASSAM project on severe accident source term mitigation, Ann. Nucl. Energy 116 (2018) 42-56. https://doi.org/10.1016/j.anucene.2018.02.024
  16. Nuclear safety act in Korea, Accessed on, https://elaw.klri.re.kr/kor_mobile/viewer.do?hseq=45486&type=sogan&key=61, 2017. (Accessed 3 June 2020).
  17. Y. Lee, Y. J. Cho, and S. Lee, Results on benchmark problems for bubble hydrodynamics & preliminary sensitivity studies on size distribution of bubbles to decontamination factor via I-COSTA, In : 3rd Meeting of the IPRESCA Project, Frankfurt, Germany, June 27-28, 2019.
  18. P.H. Calderback, A.C. Lochiel, Mass transfer coefficients, velocities and shapes of carbon dioxide bubbles in free rise through distilled water, Chem. Eng. Sci. 19 (1964) 485-503. https://doi.org/10.1016/0009-2509(64)85075-2
  19. N. Zuber, J.A. Findlay, Average volumetric concentration in two-phase flow system, J. Heat Tran. 87 (1965) 453-468. https://doi.org/10.1115/1.3689137
  20. W.L. Haberman, R.K. Morton, Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquid, David Taylor Model Basin Report, Carderlock, MD, 1953. DTMB No. 802, 55715-102.
  21. N.H. Fuch, The Mechanics of Aerosols, The Macmillan Company, New York, 1964.
  22. R.B. Bird, W.E. Stewart, N.E. Lightfoot, Transport Phenomena, second ed., John Wiley and Sons, Inc., New York, 2007.
  23. J. Crank, The Mathematics of Diffusion, Oxford University Press, London, England, 1967.
  24. H.R. Pruppacher, J.D. Klett, Microphysics of Clouds and Precipitation, D. Reidel Publishing Co., Dordrecht, Holland, 1980.
  25. K. Eckerman, J. Harrison, H.-G. Menzel, C.H. Clement, ICRP Publication 119 - Compendium of Dose Coefficients Based on ICRP Publication 60, Elsevier, Oxford, UK, 2012. ISSN 0146-6453.
  26. T. Haste, F. Payot, P.D.W. Bottomley, Transport and deposition in the Phebus FP circuit, Ann. Nucl. Energy 61 (2013) 102-121. https://doi.org/10.1016/j.anucene.2012.10.032
  27. M. Laurie, P. March, B. Simondi-Teisserie, F. Payot, Reprint of "containment behavior in phebus FP, Ann. Nucl. Energy 61 (2013) 122-134. https://doi.org/10.1016/j.anucene.2013.08.001
  28. M.Y. Kim, Y.S. Bang, T.K. Park, D.Y. Lee, B.C. Lee, S.H. Park, Containment aerosol characterization during nuclear power plant severe accident, Part. Sci. Technol. 34 (2016) 622-632. https://doi.org/10.1080/02726351.2015.1099066
  29. Y. Lee, et al., Implementation of Calculational Procedure for Bubble-sizedependent Decontamination Factors in Pool Scrubbing, Korea Institute of Nuclear Safety, Daejeon, Korea, 2019. KINS/RR-1959 (Internal report written in Korean).
  30. S.H. Park, C. Park, J. Lee, B. Lee, A simple parameterization for the rising velocity of bubbles in a liquid pool, Nucl. Eng. Technol. 49 (2017) 692-699. https://doi.org/10.1016/j.net.2016.12.006
  31. J. Bestele, W. Klein-Hebling, ASTEC V0- CPA-module Containment Thermal Hydraulics and Aerosol- and Fission Product Behaviour- User Guideline, Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS)mbH, Germany, 2000. ASTECV0/DOC/00-14.
  32. W. Klein-Hebling, et al., COCOSYS V1.2 User Manual, Gesellschaft fur Anlagen- und Reaktorsicherheit, GRS)mbH, Germany, 2000. GRS-P-3.
  33. M. Kajimoto, et al., Development of THALES-2, A computer code for coupled thermal hydraulics and FP transport analyses for severe accident at LWRs and its application to analysis of FP revaporization phenomena, in: Proc. Int. Topical Mtg. On Safety of Thermal Reactors, 1991. Portland, OR, USA, July 21-25.
  34. Y. Lee, Y.J. Cho, Sensitivity studies of entrained droplet concentrations on pool scrubbing in jet injection regime, in: The Eleventh Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11), 2018. Busan, Korea, November 18-21.
  35. C. Berna, A. Escriv a, J.L. Munoz-Cobo, L.E. Herranz, Enhancement of the ~ SPARC90 code to pool scrubbing events under jet injection regime, Nucl. Eng. Des. 300 (2016) 563-577. https://doi.org/10.1016/j.nucengdes.2016.02.027
  36. R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops and Particles, Academic press, Inc., New York, 1978.