과제정보
TJP acknowledges the Korean government, Ministry of Science and ICT, for support (No. 2017M2A8A5014859). DS acknowledges the Korean government, Ministry of Science and ICT, for support (NRF-2017R1D1A1B03035418, NRF-2019K1A3A7A09101574, and NRF-2019R1F1A106258). Experiments using synchrotron radiation were supported by Pohang Light Source (PLS-II) at Pohang Accelerator Laboratory (PAL). We thank T. Jeon for the support at beamline 3D at PAL. We thank PK and SS (CNU) for help with XRD measurements. SYL, JHR and JKL (KAERI) are acknowledged for their thoughtful discussions.
참고문헌
- R.C. Ewing, Long-term storage of spent nuclear fuel, Nat. Mater. 14 (3) (2015) 252-257. https://doi.org/10.1038/nmat4226
- W.-L. Huang, J.M. Longo, D.R. Pevear, An experimentally derived kinetic model for a smectite-to-illite conversion and its use as a geothermometer, Clay Clay Miner. 41 (1993) 162-177. https://doi.org/10.1346/CCMN.1993.0410205
- J. Cuadros, J. Linares, Experimental kinetic study of the smectite-to-illite transformation, Geochem. Cosmochim. Acta 60 (1996) 439-453. https://doi.org/10.1016/0016-7037(95)00407-6
- R. Mosser-Ruck, M. Cathelineau, A. Baronnet, A. Trouiller, "Hydrothermal reactivity of K-smectite at 300 ℃ and 100 bar: dissolution-crystallisation process and non-expandable dehydrated smectite formation, Clay Miner. 34 (1999) 275-290. https://doi.org/10.1180/000985599546235
- K. Ikonen, "Thermal Condition of Open KBS-3H Tunnel," POSIVA 2005-04, Posiva Oy, 2005.
- SKB, Design Premises for a KBS-3V Repository Based on Results from the Safety Assessment SR-Can and Some Subsequent Analyses, SKB TR-09-22, SKB, 2009.
- JNC, H12 Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan (Supporting Report 2) Repository Design and Engineering Technology, JNC TN1410 2000-003, Japan Nuclear Cycle Development Institute, Tokai, Japan, 1999.
- G.R. Simmons, P. Baumgartner, "The Disposal of Canada's Nuclear Fuel Waste: Engineering for a Disposal Facility, AECL-10715, Atomic Energy of Canada Limited, 1994.
- P. Wersin, L.H. Johnson, I.G. McKinley, Performance of the bentonite barrier at temperatures beyond 100 ℃: a critical review, Phys. Chem. Earth 32 (2007) 780-788. https://doi.org/10.1016/j.pce.2006.02.051
- W.-J. Cho, G.Y. Kim, Reconsideration of thermal criteria for Korean spent fuel repository, Ann. Nucl. Energy 88 (2016) 73-82. https://doi.org/10.1016/j.anucene.2015.09.012
- L. Zheng, J. Rutqvist, Jens T. Birkholzer, H.-H. Liu, On the impact of temperatures up to 200 ℃ in clay repositories with bentonite engineer barrier systems: a study with coupled thermal, hydrological, chemical, and mechanical modeling, Eng. Geol. 197 (2015) 278-295. https://doi.org/10.1016/j.enggeo.2015.08.026
- P. Sellin, O.S. Leupin, "The use of clay as an engineered barrier in radioactive-waste management - a Review, Clay Clay Miner. 61 (6) (2013) 477-498. https://doi.org/10.1346/CCMN.2013.0610601
- R. Pusch, F.T. Madsen, Aspects on the illitization of the kinnekulle bentonites, Clay Clay Miner. 43 (3) (1995) 261-270. https://doi.org/10.1346/CCMN.1995.0430301
- R. Pusch, O. Karnland, Geological Evidence of Smectite Longevity: the Sardinia and Gotland Cases, Technical Report TR 88-26, Swedish Nuclear fuel and Waste Management Co. SKB, 1988.
- G. Kamei, M.S. Mitsui, K. Futakuchi, S. Hashimoto, Y. Sakuramoto, "Kinetics of long-term illitization of montmorillonite - a natural analogue of thermal alteration of bentonite in the radioactive waste disposal system, J. Phys. Chem. Solid. 66 (2005) 612-614. https://doi.org/10.1016/j.jpcs.2004.06.067
- E. Casciello, J.W. Cosgrove, M. Cesarano, E. Romero, I. Queralt, J. Verges, Illite-smectite patterns in sheared pleistocene mudstones of the southern apennines and their implications regarding the process of illitization: a multiscale analysis, J. Struct. Geol. 33 (2011) 1699-1711. https://doi.org/10.1016/j.jsg.2011.08.002
- GTS Phase VI, HotBENT. grimsel.com/gts-phase-vi/hotbent-high-temperature-effects-on-bentonite-buffers/hotbent-introduction.
- G. Gadikota, F. Zhang, A.J. Allen, Towards understanding the microstructural and structural changes in natural hierarchical materials for energy recovery: in-operando multi-scale X-ray scattering characterization of Na- and Camontmorillonite on heating to 1150 ℃, Fuel 196 (2017) 195-209. https://doi.org/10.1016/j.fuel.2017.01.092
- M.-G.-B.-G.-B.-N.-L. Yoo, H.-J. Choi, M.-S. Lee, S.Y. Lee, Chemical and Mineralogical Characterization of Domestic Bentonite for a Buffer of an HLW Reporitory, KAERI/TR-6182/2015, KAERI, South Korea, 2015.
- L. Carlson, "Bentonite Mineralogy; Part 1: Methods of Investigation - a Literature Review, Part 2: Mineralogical Research of Selected Bentonites, Posiva Working Report 2004-02, Posiva Oy, Finland, 2004.
- H.J. Bray, S.A.T. Redfern, S.M. Clark, The kinetics of dehydration in Camontmorillonite: an in situ X-ray diffraction study, Mineral. Mag. 62 (5) (1998) 647-656. https://doi.org/10.1180/002646198548034
- P. Bala, B.K. Samantaray, S.K. Srivastava, H. Haeuseler, Microstructural parameters and layer disorder accompanying dehydration transformation in Na-montmorillonite, Z. fur Kristallogr. - Cryst. Mater. 215 (2000) 235-239. https://doi.org/10.1524/zkri.2000.215.4.235
- E. Ferrage, Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology, applications, and perspectives, Clay Clay Miner. 64 (4) (2016) 346-371. https://doi.org/10.1346/CCMN.2016.0640401