Acknowledgement
The work was supported by Mendeleev University of Chemical Technology of Russia. Project Number 2020-008.
References
- Brian J. Riley, et al., Materials and processes for the effective capture and immobilization of radioiodine: a review, J. Nucl. Mater. 470 (2016) 307-326, https://doi.org/10.1016/j.jnucmat.2015.11.038.
- Joffrey Huve, et al., Porous sorbents for the capture of radioactive iodine compounds: a review, RSC Adv. 8 (2018) 29248-29273, https://doi.org/10.1039/C8RA04775H.
- ISO 18417 Iodine Charcoal Sorbents for Nuclear Facilities e Method for Defining Sorption Capacity Index, 2017.
- E.P. Magomedbekov, A.V. Obruchikov, A method for properties evaluation of activated charcoal sorbents in iodine capture under dynamic conditions, Nucl. Eng. Technol. 51 (2019) 641-645, https://doi.org/10.1016/j.net.2018.10.018.
- H. Deuber, Investigations on the retention of elemental radioiodine by activated carbons at high temperatures, Nucl. Technol. 72 (1986) 44-48, https://doi.org/10.13182/NT86-A33751.
- H. Deuber, J.G. Wilhelm, Retention of elemental radioiodine by deep bed carbon filters under accident conditions, in: 17th DOE Nuclear Air Cleaning Conference, Denver, CO, USA, 1 Aug, 1982.
- N.I. Ampelogova, et al., Carbon-fiber adsorbent materials for removing radioactive iodine from gases, At. Energy. 92 (2002) 336-340, https://doi.org/10.1023/A:1016558127710.
- Jungsook Clara Wren, et al., Methyl iodide trapping efficiency of aged charcoal samples from bruce-A emergency filtered air discharge systems, Nucl. Technol. 125 (1999) 28-39, https://doi.org/10.13182/NT99-A2930.
- C.M. Gonzalez-Garcia, J.F. Gonzalez, S. Roman, Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons, Fuel Process. Technol. 92 (2011) 247-252, https://doi.org/10.1016/j.fuproc.2010.04.014.
- International Atomic Energy Agency, Testing and Monitoring of Off-Gas Cleanup Systems at Nuclear Facilities, Technical Reports Series No. 243, IAEA, Vienna, 1984.
- International Atomic Energy Agency, Comparison of High Efficiency Particulate Filter Testing Methods, IAEA-TECDOC-355, Vienna, 1985.
- S.A. Kulyukhin, Fundamental and applied aspects of the chemistry of radioactive iodine in gas and aqueous media, Russ. Chem. Rev. 81 (2012) 960-982, https://doi.org/10.1070/RC2012v081n10ABEH004269.
- Ki Bang Sung, et al., Method and device for synthesizing radioactive methyl iodide tracer, 8 Apr. 2014. United States Patent No. 8,692,039.
- S.A. Mamedov, et al., Method of Obtaining Methyl Iodide, Soviet Union Patent No. 611900, 25 Jun. 1978.
- A.V. Obruchikov, S.M. Lebedev, Study on adsorption removal of radioactive methyl iodide by modified Busofit carbon fibers, Inorg. Mater. Appl. Res. 3 (2012) 398-400, https://doi.org/10.1134/S2075113312050127.
- A.V. Obruchikov, et al., Method for obtaining radioactive methyliodide vapors under dynamic conditions, J. Radioanal. Nucl. Chem. 326 (2020) 1895-1900, https://doi.org/10.1007/s10967-020-07434-9.