DOI QR코드

DOI QR Code

Silver nanoparticles in endodontics: recent developments and applications

  • Aysenur Oncu (Department of Endodontics, Ankara University Faculty of Dentistry) ;
  • Yan Huang (Department of Dental Hygiene Research & Development in Health & Care, Artevelde University of Applied Sciences) ;
  • Gulin Amasya (Department of Pharmaceutical Technology, Ankara University Faculty of Pharmacy) ;
  • Fatma Semra Sevimay (Department of Endodontics, Ankara University Faculty of Dentistry) ;
  • Kaan Orhan (Department of Dentomaxillofacial Radiology, Ankara University Faculty of Dentistry) ;
  • Berkan Celikten (Department of Endodontics, Ankara University Faculty of Dentistry)
  • Received : 2020.10.22
  • Accepted : 2021.01.04
  • Published : 2021.08.31

Abstract

The elimination of endodontic biofilms and the maintenance of a leak-proof canal filling are key aspects of successful root canal treatment. Several materials have been introduced to treat endodontic disease, although treatment success is limited by the features of the biomaterials used. Silver nanoparticles (AgNPs) have been increasingly considered in dental applications, especially endodontics, due to their high antimicrobial activity. For the present study, an electronic search was conducted using MEDLINE (PubMed), the Cochrane Central Register of Controlled Trials (CENTRAL), Google Scholar, and EMBASE. This review provides insights into the unique characteristics of AgNPs, including their chemical, physical, and antimicrobial properties; limitations; and potential uses. Various studies involving different application methods of AgNPs were carefully examined. Based on previous clinical studies, the synthesis, means of obtaining, usage conditions, and potential cytotoxicity of AgNPs were evaluated. The findings indicate that AgNPs are effective antimicrobial agents for the elimination of endodontic biofilms.

Keywords

References

  1. Vestby LK, Gronseth T, Simm R, Nesse LL. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics (Basel) 2020;9:59.
  2. Neelakantan P, Romero M, Vera J, Daood U, Khan AU, Yan A, Cheung GS. Biofilms in endodontics-current status and future directions. Int J Mol Sci 2017;18:1748.
  3. Mensi M, Scotti E, Sordillo A, Agosti R, Calza S. Plaque disclosing agent as a guide for professional biofilm removal: a randomized controlled clinical trial. Int J Dent Hyg 2020;18:285-294. https://doi.org/10.1111/idh.12442
  4. Tolker-Nielsen T. Biofilm development. Microbiol Spectr 2015;3:MB-0001-MB-2014.
  5. Abusrewil S, Alshanta OA, Albashaireh K, Alqahtani S, Nile CJ, Scott JA, McLean W. Detection, treatment and prevention of endodontic biofilm infections: what's new in 2020? Crit Rev Microbiol 2020;46:194-212. https://doi.org/10.1080/1040841X.2020.1739622
  6. Haapasalo M, Shen Y, Wang Z, Gao Y. Irrigation in endodontics. Br Dent J 2014;216:299-303. https://doi.org/10.1038/sj.bdj.2014.204
  7. Garcia-Guerrero C, Delgado-Rodriguez CE, Molano-Gonzalez N, Pineda-Velandia GA, Marin-Zuluaga DJ, Leal-Fernandez MC, Gutmann JL. Predicting the outcome of initial non-surgical endodontic procedures by periapical status and quality of root canal filling: a cohort study. Odontology 2020;108:697-703. https://doi.org/10.1007/s10266-020-00494-z
  8. Schmalz G, Hickel R, van Landuyt KL, Reichl FX. Nanoparticles in dentistry. Dent Mater 2017;33:1298-1314. https://doi.org/10.1016/j.dental.2017.08.193
  9. Kaur P, Luthra R. Silver nanoparticles in dentistry: an emerging trend. SRM J Res Dent Sci 2016;7:162.
  10. Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 2017;18:120.
  11. Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater 2018;7:e1701503.
  12. Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2012;2:32.
  13. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 1995;18:321-336. https://doi.org/10.1016/0891-5849(94)00159-H
  14. Samiei M, Farjami A, Dizaj SM, Lotfipour F. Nanoparticles for antimicrobial purposes in endodontics: a systematic review of in vitro studies. Mater Sci Eng C 2016;58:1269-1278. https://doi.org/10.1016/j.msec.2015.08.070
  15. Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2004;2:3.
  16. Du Q, Fu M, Zhou Y, Cao Y, Guo T, Zhou Z, Li M, Peng X, Zheng X, Li Y, Xu X, He J, Zhou X. Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: an in vitro study. Sci Rep 2020;10:2961.
  17. Pamp SJ, Gjermansen M, Tolker-Nielsen T. The biofilm mode of life: mechanisms and adaptation. Biosci Horiz 2007;16:37-69. 
  18. Teves A, Blanco D, Casaretto M, Torres J, Alvarado D, Jaramillo DE. Effectiveness of different disinfection techniques of the root canal in the elimination of a multi-species biofilm. J Clin Exp Dent 2019;11:e978-e983.
  19. Nwodo UU, Green E, Okoh AI. Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 2012;13:14002-14015. https://doi.org/10.3390/ijms131114002
  20. Sutherland I. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology (Reading) 2001;147:3-9. https://doi.org/10.1099/00221287-147-1-3
  21. Lynch DJ, Fountain TL, Mazurkiewicz JE, Banas JA. Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture. FEMS Microbiol Lett 2007;268:158-165. https://doi.org/10.1111/j.1574-6968.2006.00576.x
  22. Lemos J, Palmer S, Zeng L, Wen Z, Kajfasz J, Freires I, Abranches J, Brady L. The biology of Streptococcus mutans. 3rd ed. Gram-Positive Pathogens 2019:435-448. 
  23. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002;15:167-193. https://doi.org/10.1128/CMR.15.2.167-193.2002
  24. Jhajharia K, Parolia A, Shetty KV, Mehta LK. Biofilm in endodontics: a review. J Int Soc Prev Community Dent 2015;5:1-12.
  25. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Bacterial quorum sensing and microbial community interactions. MBio 2018;9:e02331-17.
  26. Schluter J, Schoech AP, Foster KR, Mitri S. The evolution of quorum sensing as a mechanism to infer kinship. PLOS Comput Biol 2016;12:e1004848.
  27. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 2017;15:740-755. https://doi.org/10.1038/nrmicro.2017.99
  28. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 2006;32:93-98.
  29. Saatchi M, Shokraneh A, Navaei H, Maracy MR, Shojaei H. Antibacterial effect of calcium hydroxide combined with chlorhexidine on Enterococcus faecalis: a systematic review and meta-analysis. J Appl Oral Sci 2014;22:356-365. https://doi.org/10.1590/1678-775720140032
  30. Yu MK, Kim MA, Rosa V, Hwang YC, Del Fabbro M, Sohn WJ, Min KS. Role of extracellular DNA in Enterococcus faecalis biofilm formation and its susceptibility to sodium hypochlorite. J Appl Oral Sci 2019;27:e20180699.
  31. Barnes AM, Ballering KS, Leibman RS, Wells CL, Dunny GM. Enterococcus faecalis produces abundant extracellular structures containing DNA in the absence of cell lysis during early biofilm formation. MBio 2012;3:e00193-e12.
  32. Chang JD, Wallace AG, Foster EE, Kim SJ. Peptidoglycan compositional analysis of Enterococcus faecalis biofilm by stable isotope labeling by amino acids in a bacterial culture. Biochemistry 2018;57:1274-1283. https://doi.org/10.1021/acs.biochem.7b01207
  33. Bulacio ML, Galvan LR, Gaudioso C, Cangemi R, Erimbaue MI. Enterococcus Faecalis biofilm. Formation and development in vitro observed by scanning electron microscopy. Acta Odontol Latinoam 2015;28:210-214.
  34. Kuang X, Chen V, Xu X. Novel approaches to the control of oral microbial biofilms. BioMed Res Int 2018;2018:6498932.
  35. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Agents that inhibit bacterial biofilm formation. Future Med Chem 2015;7:647-671. https://doi.org/10.4155/fmc.15.7
  36. Veerapandian M, Yun K. Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl Microbiol Biotechnol 2011;90:1655-1667. https://doi.org/10.1007/s00253-011-3291-6
  37. Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: a review. J Endod 2016;42:1417-1426. https://doi.org/10.1016/j.joen.2016.05.021
  38. Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 2018;123:505-526. https://doi.org/10.1016/j.micpath.2018.08.008
  39. Cao W, Zhang Y, Wang X, Li Q, Xiao Y, Li P, Wang L, Ye Z, Xing X. Novel resin-based dental material with anti-biofilm activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond. J Mater Sci Mater Med 2018;29:162. 
  40. Saafan A, Zaazou MH, Sallam MK, Mosallam O, El Danaf HA. Assessment of photodynamic therapy and nanoparticles effects on caries models. Open Access Maced J Med Sci 2018;6:1289-1295. https://doi.org/10.3889/oamjms.2018.241
  41. Bukhari S, Kim D, Liu Y, Karabucak B, Koo H. Novel endodontic disinfection approach using catalytic nanoparticles. J Endod 2018;44:806-812. https://doi.org/10.1016/j.joen.2017.12.003
  42. Rajeshkumar S, Bharath LV. Mechanism of plant-mediated synthesis of silver nanoparticles - A review on biomolecules involved, characterisation and antibacterial activity. Chem Biol Interact 2017;273:219-227. https://doi.org/10.1016/j.cbi.2017.06.019
  43. Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 2019;20:865.
  44. Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016;17:1534.
  45. Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 2015;99:4579-4593. https://doi.org/10.1007/s00253-015-6622-1
  46. Mousavi SM, Hashemi SA, Ghasemi Y, Atapour A, Amani AM, Savar Dashtaki A, Babapoor A, Arjmand O. Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artif Cells Nanomed Biotechnol 2018;46 sup3:S855-S872.
  47. Patil MP, Kim GD. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 2017;101:79-92. https://doi.org/10.1007/s00253-016-8012-8
  48. Hong X, Wen J, Xiong X, Hu Y. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ Sci Pollut Res Int 2016;23:4489-4497. https://doi.org/10.1007/s11356-015-5668-z
  49. Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SN. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int J Nanomedicine 2014;9:121-127. https://doi.org/10.2217/nnm.13.191
  50. Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater 2018;7:e1701503.
  51. Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 2008;24:192-196. 
  52. Bapat RA, Chaubal TV, Joshi CP, Bapat PR, Choudhury H, Pandey M, Gorain B, Kesharwani P. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C 2018;91:881-898. https://doi.org/10.1016/j.msec.2018.05.069
  53. Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA. Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B Biointerfaces 2013;102:300-306. https://doi.org/10.1016/j.colsurfb.2012.07.039
  54. Shrivastava S, Bera T, Singh SK, Singh G, Ramachandrarao P, Dash D. Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 2009;3:1357-1364. https://doi.org/10.1021/nn900277t
  55. Manikprabhu D, Lingappa K. Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. J Pharm Res 2013;6:255-260.
  56. Zawadzka K, Kadziola K, Felczak A, Wronska N, Piwonski I, Kisielewska A, Lisowska K. Surface area or diameter-which factor really determines the antibacterial activity of silver nanoparticles grown on TiO 2 coatings? New J Chem 2014;38:3275-3281. https://doi.org/10.1039/C4NJ00301B
  57. Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine 2018;13:3311-3327. https://doi.org/10.2147/IJN.S165125
  58. Markowska K, Grudniak AM, Wolska KI. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol 2013;60:523-530. 
  59. Fissan H, Ristig S, Kaminski H, Asbach C, Epple M. Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal Methods 2014;6:7324-7334. https://doi.org/10.1039/C4AY01203H
  60. Blanchard PY, Sun T, Yu Y, Wei Z, Matsui H, Mirkin MV. Scanning electrochemical microscopy study of permeability of a thiolated aryl multilayer and imaging of single nanocubes anchored to it. Langmuir 2016;32:2500-2508. https://doi.org/10.1021/acs.langmuir.5b03858
  61. Eaton P, Batziou K. Artifacts and practical issues in atomic force microscopy. Methods Mol Biol 2019;1886:3-28. https://doi.org/10.1007/978-1-4939-8894-5_1
  62. Leung AB, Suh KI, Ansari RR. Particle-size and velocity measurements in flowing conditions using dynamic light scattering. Appl Opt 2006;45:2186-2190. https://doi.org/10.1364/AO.45.002186
  63. Das R, Nath S, Chakdar D, Gope G, Bhattacharjee R. Preparation of silver nanoparticles and their characterization. J Nanotechnol 2009;5:1-6. 
  64. Paddock SW, Eliceiri KW. Laser scanning confocal microscopy: history, applications, and related optical sectioning techniques. Methods Mol Biol 2014;1075:9-47. https://doi.org/10.1007/978-1-60761-847-8_2
  65. Lotfi M, Vosoughhosseini S, Ranjkesh B, Khani S, Saghiri M, Zand V. Antimicrobial efficacy of nanosilver, sodium hypochlorite and chlorhexidine gluconate against Enterococcus faecalis. Afr J Biotechnol 2011;10:6799-6803. 
  66. Hiraishi N, Yiu CK, King NM, Tagami J, Tay FR. Antimicrobial efficacy of 3.8% silver diamine fluoride and its effect on root dentin. J Endod 2010;36:1026-1029. https://doi.org/10.1016/j.joen.2010.02.029
  67. Rodrigues CT, de Andrade FB, de Vasconcelos LR, Midena RZ, Pereira TC, Kuga MC, Duarte MA, Bernardineli N. Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules. Int Endod J 2018;51:901-911. https://doi.org/10.1111/iej.12904
  68. Wu D, Fan W, Kishen A, Gutmann JL, Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod 2014;40:285-290. https://doi.org/10.1016/j.joen.2013.08.022
  69. Charannya S, Duraivel D, Padminee K, Poorni S, Nishanthine C, Srinivasan MR. Comparative evaluation of antimicrobial efficacy of silver nanoparticles and 2% chlorhexidine gluconate when used alone and in combination assessed using agar diffusion method: an in vitro study. Contemp Clin Dent 2018;9 Supplement 2:S204-S209.
  70. Yousefshahi H, Aminsobhani M, Shokri M, Shahbazi R. Anti-bacterial properties of calcium hydroxide in combination with silver, copper, zinc oxide or magnesium oxide. Eur J Transl Myol 2018;28:7545.
  71. Shantiaee Y, Dianat O, Mohammadkhani H, Akbarzadeh BA. Cytotoxicity comparison of nanosilver coated gutta-percha with Guttaflow and normal gutta-percha on L929 fibroblast with MTT assay. Shahid Beheshti Univ Dent J 2011;29:62-68. 
  72. Bahador A, Pourakbari B, Bolhari B, Hashemi FB. In vitro evaluation of the antimicrobial activity of nanosilver-mineral trioxide aggregate against frequent anaerobic oral pathogens by a membrane-enclosed immersion test. Biomed J 2015;38:77-83. https://doi.org/10.4103/2319-4170.132901
  73. Baras BH, Melo MA, Sun J, Oates TW, Weir MD, Xie X, Bai Y, Xu HH. Novel endodontic sealer with dual strategies of dimethylaminohexadecyl methacrylate and nanoparticles of silver to inhibit root canal biofilms. Dent Mater 2019;35:1117-1129. https://doi.org/10.1016/j.dental.2019.05.014
  74. de Almeida J, Cechella BC, Bernardi AV, de Lima Pimenta A, Felippe WT. Effectiveness of nanoparticles solutions and conventional endodontic irrigants against Enterococcus faecalis biofilm. Indian J Dent Res 2018;29:347-351. https://doi.org/10.4103/ijdr.IJDR_634_15
  75. Halkai KR, Mudda JA, Shivanna V, Rathod V, Halkai R. Evaluation of antibacterial efficacy of fungal-derived silver nanoparticles against Enterococcus faecalis. Contemp Clin Dent 2018;9:45-48.
  76. Athanassiadis B, Abbott PV, Walsh LJ. The use of calcium hydroxide, antibiotics and biocides as antimicrobial medicaments in endodontics. Aust Dent J 2007;52 Supplement:S64-S82.
  77. Suzuki TY, Gallego J, Assuncao WG, Briso AL, Dos Santos PH. Influence of silver nanoparticle solution on the mechanical properties of resin cements and intrarradicular dentin. PLoS One 2019;14:e0217750.
  78. Afkhami F, Pourhashemi SJ, Sadegh M, Salehi Y, Fard MJ. Antibiofilm efficacy of silver nanoparticles as a vehicle for calcium hydroxide medicament against Enterococcus faecalis. J Dent 2015;43:1573-1579. https://doi.org/10.1016/j.jdent.2015.08.012
  79. Fan W, Wu Y, Ma T, Li Y, Fan B. Substantivity of Ag-Ca-Si mesoporous nanoparticles on dentin and its ability to inhibit Enterococcus faecalis. J Mater Sci Mater Med 2016;27:16.
  80. Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, Grumezescu AM. Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem 2015;15:1596-1604. https://doi.org/10.2174/1568026615666150414142209
  81. Mathur P, Jha S, Ramteke S, Jain NK. Pharmaceutical aspects of silver nanoparticles. Artif Cells Nanomed Biotechnol 2018;46 sup1:115-126. https://doi.org/10.1080/21691401.2017.1414825
  82. Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials (Basel) 2013;6:2295-2350. https://doi.org/10.3390/ma6062295
  83. Palacios-Hernandez T, Diaz-Diestra DM, Nguyen AK, Skoog SA, Vijaya Chikkaveeraiah B, Tang X, Wu Y, Petrochenko PE, Sussman EM, Goering PL. Cytotoxicity, cellular uptake and apoptotic responses in human coronary artery endothelial cells exposed to ultrasmall superparamagnetic iron oxide nanoparticles. J Appl Toxicol 2020;40:918-930. https://doi.org/10.1002/jat.3953
  84. Panacek A, Smekalova M, Vecerova R, Bogdanova K, Roderova M, Kolar M, Kilianova M, Hradilova S, Froning JP, Havrdova M, Prucek R, Zboril R, Kvitek L. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf B Biointerfaces 2016;142:392-399. https://doi.org/10.1016/j.colsurfb.2016.03.007
  85. Chowdhury NR, MacGregor-Ramiasa M, Zilm P, Majewski P, Vasilev K. 'Chocolate' silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity. J Colloid Interface Sci 2016;482:151-158. https://doi.org/10.1016/j.jcis.2016.08.003