DOI QR코드

DOI QR Code

A micro-computed tomographic study using a novel test model to assess the filling ability and volumetric changes of bioceramic root repair materials

  • Received : 2020.03.13
  • Accepted : 2020.06.17
  • Published : 2021.02.28

Abstract

Objectives: New premixed bioceramic root repair materials require moisture for setting. Using micro-computed tomography (micro-CT), this study evaluated the filling ability and volumetric changes of calcium silicate-based repair materials (mineral trioxide aggregate repair high-plasticity [MTA HP] and Bio-C Repair, Angelus), in comparison with a zinc oxide and eugenol-based material (intermediate restorative material [IRM]; Dentsply DeTrey). Materials and Methods: Gypsum models with cavities 3 mm deep and 1 mm in diameter were manufactured and scanned using micro-CT (SkyScan 1272. Bruker). The cavities were filled with the cements and scanned again to evaluate their filling capacity. Another scan was performed after immersing the samples in distilled water for 7 days to assess the volumetric changes of the cements. The statistical significance of differences in the data was evaluated using analysis of variance and the Tukey test with a 5% significance level. Results: Bio-C Repair had a greater filling ability than MTA HP (p < 0.05). IRM was similar to Bio-C and MTA HP (p > 0.05). MTA HP presented the largest volumetric change (p < 0.05), showing more volume loss than Bio-C and IRM, which were similar (p > 0.05). Conclusions: Bio-C Repair is a new endodontic material with excellent filling capacity and low volumetric change. The gypsum model proposed for evaluating filling ability and volumetric changes by micro-CT had appropriate and reproducible results. This model may enhance the physicochemical evaluation of premixed bioceramic materials, which need moisture for setting.

Keywords

Acknowledgement

This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brasil (CAPES) Finance Code 001, PIBIC/CNPq, and was fully supported by FAPESP (2016/00321-0, 2017/19049-0 and 2018/19665-6).

References

  1. Torabinejad M, Parirokh M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. Int Endod J 2018;51:284-317. https://doi.org/10.1111/iej.12843
  2. Akbulut MB, Bozkurt DA, Terlemez A, Akman M. The push-out bond strength of BIOfactor mineral trioxide aggregate, a novel root repair material. Restor Dent Endod 2019;44:e5.
  3. Prati C, Gandolfi MG. Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater 2015;31:351-370. https://doi.org/10.1016/j.dental.2015.01.004
  4. Ferreira CMA, Sassone LM, Goncalves AS, de Carvalho JJ, Tomas-Catala CJ, Garcia-Bernal D, OnateSanchez RE, Rodriguez-Lozano FJ, Silva EJ. Physicochemical, cytotoxicity and in vivo biocompatibility of a high-plasticity calcium-silicate based material. Sci Rep 2019;9:3933.
  5. Jimenez-Sanchez MDC, Segura-Egea JJ, Diaz-Cuenca A. MTA HP Repair stimulates in vitro an homogeneous calcium phosphate phase coating deposition. J Clin Exp Dent 2019;11:e322-e326.
  6. Cintra LTA, Benetti F, de Azevedo Queiroz IO, de Araujo Lopes JM, Penha de Oliveira SH, Sivieri Araujo G, Gomes-Filho JE. Cytotoxicity, biocompatibility, and biomineralization of the new high-plasticity MTA material. J Endod 2017;43:774-778. https://doi.org/10.1016/j.joen.2016.12.018
  7. Tomas-Catala CJ, Collado-Gonzalez M, Garcia-Bernal D, Onate-Sanchez RE, Forner L, Llena C, Lozano A, Castelo-Baz P, Moraleda JM, Rodriguez-Lozano FJ. Comparative analysis of the biological effects of the endodontic bioactive cements MTA-Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. Int Endod J 2017;50 Supplement 2:e63-e72.
  8. Benetti F, Queiroz IOA, Cosme-Silva L, Conti LC, Oliveira SHP, Cintra LTA. Cytotoxicity, biocompatibility and biomineralization of a new ready-for-use Bioceramic Repair material. Braz Dent J 2019;30:325-332. https://doi.org/10.1590/0103-6440201902457
  9. Lopez-Garcia S, Lozano A, Garcia-Bernal D, Forner L, Llena C, Guerrero-Girones J, Moraleda JM, Murcia L, Rodriguez-Lozano FJ. Biological effects of new hydraulic materials on human periodontal ligament stem cells. J Clin Med 2019;8:1216.
  10. Biocanin V, Antonijevic D, Postic S, Ilic D, Vukovic Z, Milic M, Fan Y, Li Z, Brkovic B, Duric M. Marginal gaps between 2 calcium silicate and glass ionomer cements and apical root dentin. J Endod 2018;44:816-821. https://doi.org/10.1016/j.joen.2017.09.022
  11. Chang SW. Chemical characteristics of mineral trioxide aggregate and its hydration reaction. Restor Dent Endod 2012;37:188-193. https://doi.org/10.5395/rde.2012.37.4.188
  12. Torres FFE, Guerreiro-Tanomaru JM, Chavez-Andrade GM, Pinto JC, Berbert FL, Tanomaru-Filho M. Micro-computed tomographic evaluation of the flow and filling ability of endodontic materials using different test models. Restor Dent Endod 2020;45:e11.
  13. Torres FFE, Zordan-Bronzel CL, Guerreiro-Tanomaru JM, Chavez-Andrade GM, Pinto JC, Tanomaru-Filho M. Effect of immersion in distilled water or phosphate-buffered saline on the solubility, volumetric change and presence of voids within new calcium silicate-based root canal sealers. Int Endod J 2020;53:385-391. https://doi.org/10.1111/iej.13225
  14. Zordan-Bronzel CL, Esteves Torres FF, Tanomaru-Filho M, Chavez-Andrade GM, Bosso-Martelo R, Guerreiro-Tanomaru JM. Evaluation of physicochemical properties of a new calcium silicate-based sealer, Bio-C sealer. J Endod 2019;45:1248-1252. https://doi.org/10.1016/j.joen.2019.07.006
  15. Darvell BW, Wu RC. "MTA"-an hydraulic silicate cement: review update and setting reaction. Dent Mater 2011;27:407-422.
  16. Silva Almeida LH, Moraes RR, Morgental RD, Pappen FG. Are premixed calcium silicate-based endodontic sealers comparable to conventional materials? a systematic review of in vitro studies. J Endod 2017;43:527-535.
  17. International Organization for Standardization. ISO 6876: dental root canal sealing materials. Geneva: International Organization for Standardization; 2012.
  18. Torres FFE, Bosso-Martelo R, Espir CG, Cirelli JA, Guerreiro-Tanomaru JM, Tanomaru-Filho M. Evaluation of physicochemical properties of root-end filling materials using conventional and micro-CT tests. J Appl Oral Sci 2017;25:374-380. https://doi.org/10.1590/1678-7757-2016-0454
  19. Guo YJ, Du TF, Li HB, Shen Y, Mobuchon C, Hieawy A, Wang ZJ, Yang Y, Ma J, Haapasalo M. Physical properties and hydration behavior of a fast-setting bioceramic endodontic material. BMC Oral Health 2016;16:23.
  20. Camilleri J, Grech L, Galea K, Keir D, Fenech M, Formosa L, Damidot D, Mallia B. Porosity and root dentine to material interface assessment of calcium silicate-based root-end filling materials. Clin Oral Investig 2014;18:1437-1446.
  21. Gandolfi MG, Siboni F, Botero T, Bossu M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater 2015;13:43-60.
  22. Kim S, Kratchman S. Modern endodontic surgery concepts and practice: a review. J Endod 2006;32:601-623. https://doi.org/10.1016/j.joen.2005.12.010
  23. Torres FF, Jacobs R, EzEldeen M, Guerreiro-Tanomaru JM, Dos Santos BC, Lucas-Oliveira E, Bonagamba TJ, Tanomaru-Filho M. Micro-computed tomography high resolution evaluation of dimensional and morphological changes of 3 root-end filling materials in simulated physiological conditions. J Mater Sci Mater Med 2020;31:14.
  24. Hashem AA, Hassanien EE. ProRoot MTA, MTA-Angelus and IRM used to repair large furcation perforations: sealability study. J Endod 2008;34:59-61. https://doi.org/10.1016/j.joen.2007.09.007
  25. Ovsay E, Kaptan RF, Sahin F. The repair of furcal perforations in different diameters with Biodentine, MTA, and IRM repair materials: a laboratory study using an E. Faecalis leakage model. BioMed Res Int 2018;2018:5478796.
  26. Lertmalapong P, Jantarat J, Srisatjaluk RL, Komoltri C. Bacterial leakage and marginal adaptation of various bioceramics as apical plug in open apex model. J Investig Clin Dent 2019;10:e12371.
  27. Tanomaru-Filho M, Torres FFE, Bosso-Martelo R, Chavez-Andrade GM, Bonetti-Filho I, Guerreiro-Tanomaru JM. A novel model for evaluating the flow of endodontic materials using micro-computed tomography. J Endod 2017;43:796-800. https://doi.org/10.1016/j.joen.2016.12.002
  28. Dorileo MC, Pedro FL, Bandeca MC, Guedes OA, Villa RD, Borges AH. Comparative analysis of physicochemical properties of root perforation sealer materials. Restor Dent Endod 2014;39:201-209. https://doi.org/10.5395/rde.2014.39.3.201
  29. Elyassi Y, Moinzadeh AT, Kleverlaan CJ. Characterization of leachates from 6 root canal sealers. J Endod 2019;45:623-627.
  30. Song YS, Choi Y, Lim MJ, Yu MK, Hong CU, Lee KW, Min KS. In vitro evaluation of a newly produced resin-based endodontic sealer. Restor Dent Endod 2016;41:189-195. https://doi.org/10.5395/rde.2016.41.3.189
  31. Guimaraes BM, Prati C, Duarte MAH, Bramante CM, Gandolfi MG. Physicochemical properties of calcium silicate-based formulations MTA Repair HP and MTA Vitalcem. J Appl Oral Sci 2018;26:e2017115.
  32. Singh S, Podar R, Dadu S, Kulkarni G, Purba R. Solubility of a new calcium silicate-based root-end filling material. J Conserv Dent 2015;18:149-153. https://doi.org/10.4103/0972-0707.153053