DOI QR코드

DOI QR Code

Enzyme induced carbonate precipitation for soil internal erosion control under water seepage

  • He, Jia (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Fang, Changhang (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Hang, Lei (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Qi, Yongshuai (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Mao, Xunyu (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Yan, Boyang (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Zhou, Yundong (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Gao, Yufeng (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University)
  • Received : 2020.08.16
  • Accepted : 2021.08.03
  • Published : 2021.08.10

Abstract

Seepage induced internal erosion in earth dams, dikes, and their underlying soil strata may cause destruction of earthen structures and flooding of lowland regions. In this study, efforts were made to evaluate the use of the enzyme induced carbonate precipitation (EICP) method for the control of internal erosion under water seepage. Gap-graded soils with 15% fine particles were improved by the EICP method for 1 to 5 passes. In each pass of treatment, 1.5 pore volume treatment liquid containing soybean-derived urease and 0.5 mol/L equimolar urea-calcium chloride was applied to the soil sample. After the EICP improvement, the soil samples underwent seepage erosion of stepwise-increased flow rates. In addition to the EICP-treated soil samples, an untreated soil sample and a soil sample treated by the microbially induced carbonate precipitation (MICP) method were also tested for comparison. The results showed that, in terms of the amount and rate of eroded fine particles, the EICP soil samples had stronger resistance against seepage erosion as compared with the MICP sample and the untreated soil sample. The erosion control effects also improved with treatment passes. The EICP improvement was also effective in reducing the axial deformation of soil. The level of axial deformation was roughly consistent with the amount of fine particles eroded. The calcium carbonate distribution was relatively uniform in the EICP samples compared with the MICP sample. The results presented in the paper show that the EICP method is a promising solution for the control of seepage induced internal erosion in soils.

Keywords

Acknowledgement

The research presented in this paper was financially supported by Natural Science Foundation of China (Projects No. 51978244, 51979088, and 52078188).

References

  1. Adams, B.T., Xiao, M. and Wright, A. (2013), "Erosion mechanisms of organic soil and bioabatement of piping erosion of sand", J. Geotech. Geoenviron. Eng., 139(8), 1360-1368. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000863.
  2. Almajed, A., Lemboye, K., Arab, M.G. and Alnuaim, A. (2020), "Mitigating wind erosion of sand using biopolymer-assisted EICP technique", Soils Found., 60(2), 356-371. http://doi.org/10.1016/j.sandf.2020.02.011.
  3. Al Qabany, A. and Soga, K. (2013), "Effect of chemical treatment used in MICP on engineering properties of cemented soils", Geotechnique., 63(4), 331-339. http://doi.org/10.1680/geot.SIP13.P.022.
  4. Amin, M., Zomorodian, S.M.A. and O'Kelly, B.C. (2017), "Reducing the hydraulic erosion of sand using microbial-induced carbonate precipitation", Proc. Inst. Civ. Eng. Ground Improv., 170(GI2), 112-122. http://doi.org/10.1680/jgrim.16.00028.
  5. Bendahmane, F., Marot, D. and Alexis, A. (2008), "Experimental parametric study of suffusion and backward erosion", J. Geotech. Geoenviron. Eng., 134(1), 57-67. http://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(57).
  6. Bian, X., Cui, Y., Zeng, L. and Li, X. (2020), "State of compacted bentonite inside a fractured granite cylinder after infiltration", Appl. Clay Sci., 186. http://doi.org/10.1016/j.clay.2020.105438.
  7. Blauw, M., Lambert, J.W.M. and Latil, M.N. (2009), "Biosealing: A method for in situ sealing of leakages", Proceedings of the International Symposium on Ground Improvement Technologies and Case Histories, Singapore, December.
  8. Chang, D. and Zhang, L.M. (2013a), "Critical hydraulic gradients of internal erosion under complex stress states", J. Geotech. Geoenviron. Eng., 139(9), 1454-1467. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000871.
  9. Chang, D. and Zhang, L.M. (2013b), "Extended internal stability criteria for soils under seepage", Soils Found., 53(4), 569-583. http://doi.org/10.1016/j.sandf.2013.06.008.
  10. Cheng, Q., Tang, C., Zeng, H., Zhu, C., An, N. and Shi, B. (2020), "Effects of microstructure on desiccation cracking of a compacted soil", Eng. Geol., 265. http://doi.org/10.1016/j.enggeo.2019.105418.
  11. Choi, S., Chu, J. and Kwon, T. (2019), "Effect of chemical concentrations on strength and crystal size of biocemented sand", Geomech. Eng., 17(5), 465-473. http://doi.org/10.12989/gae.2019.17.5.465.
  12. Chu, J., Stabnikov, V. and Ivanov, V. (2012), "Microbially induced calcium carbonate precipitation on surface or in the bulk of soil", Geomicrobiol. J., 29(6), 544-549. http://doi.org/10.1080/01490451.2011.592929.
  13. Dan, V.N., Nicolau, D.V., Paszek, E. and Fulga, F. (2014), "Mapping hydrophobicity on the protein molecular surface at atom-level resolution", Plos One, 9(12). http://doi.org/10.1371/journal.pone.0114042.
  14. DeJong, J.T., Mortensen, B.M., Martinez, B.C. and Nelson, D.C. (2010), "Bio-mediated soil improvement", Ecol. Eng., 36(2), 197-210. http://doi.org/10.1016/j.ecoleng.2008.12.029.
  15. DeJong, J. T., Soga, K., Kavazanjian, E., Burns, S., Van Paassen, L.A., Al Qabany, A., Aydilek, A., Bang, S.S., Burbank, M., Caslake, L.F., Chen, C.Y., Cheng, X., Chu, J., Ciurli, S., Esnault-Filet, A., Fauriel, S., Hamdan, N., Hata, T., Inagaki, Y., Jefferis, S., Kuo, M., Laloui, L., Larrahondo, J., Manning, D.A.C., Martinez, B., Montoya, B.M., Nelson, D.C., Palomino, A., Renforth, P., Santamarina, J.C., Seagren, E.A., Tanyu, B., Teserarsky, M., Weaver, T. and Laloui, L. (2013), "Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges", Geotechnique., 63(4), 287-301. http://doi.org/10.1680/geot.SIP13.P.017.
  16. Dhami, N.K., Reddy, M.S. and Mukherjee, A. (2013), "Biomineralization of calcium carbonates and their engineered applications: A review", Front. Microbiol., 4, 314-314. http://doi.org/10.3389/fmicb.2013.00314.
  17. Erickson, H.P. (2009), "Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy", Biol. Proc. Online, 11(1), 32-51. http://doi.org/10.1007/s12575-009-9008-x.
  18. Fannin, R.J. and Slangen, P. (2014), "On the distinct phenomena of suffusion and suffusion", Geotech. Lett., 4(4), 289-294. http:/.doi.org/10.1680/geolett.14.00051.
  19. Fattahi, S.M., Soroush, A. and Huang, N. (2020), "Biocementation control of sand against wind erosion", J. Geotech. Geoenviron. Eng., 146(6), 04020045. http://doi.org/10.1061/(ASCE)GT.1943-5606.0002268.
  20. Floresberrones, R., Ramirezreynaga, M. and Macari, E.J. (2011), "Internal erosion and rehabilitation of an earth-rock dam", J. Geotech. Geoenviron. Eng., 137(2), 150-160. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000371.
  21. Gao, Y.F., Hang, L., He, J. and Chu, J. (2019a), "Mechanical behaviour of biocemented sands at various treatment levels and relative densities", Acta Geotech., 14(3), 697-707. http://doi.org/10.1007/s11440-018-0729-3.
  22. Gao, Y.F., He, J., Tang, X.Y. and Chu, J. (2019b), "Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil", Soils Found., 59(5), 1631-1637. https://doi.org/10.1016/j.sandf.2019.03.014.
  23. Hamdan, N. and Kavazanjian, E.J. (2016), "Enzyme-induced carbonate mineral precipitation for fugitive dust control", Geotechnique, 66(7), 546-555. http://doi.org/10.1016/j.sandf.2019.03.014.
  24. Hang, L., Gao, Y., He, J. and Chu, J. (2019), "Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions", Geomech. Eng., 17(5), 497-505. http://doi.org/10.12989/gae.2019.17.5.497.
  25. Haouzi, F.Z., Filet, A.E. and Courcelles, B. (2018), "Performance studies of microbial induced calcite precipitation to prevent the erosion of internally unstable granular soils", Proceedings of the GeoChina 2018: Advancements on Sustainable Civil Infrastructures, Hangzhou, China, July.
  26. He, J., Chu, J. and Ivanov, V. (2013), "Mitigation of liquefaction of saturated sand using biogas", Geotechnique, 63(4), 267-275. http://doi.org/10.1680/geot.SIP13.P.004.
  27. He, J. and Chu, J. (2014), "Undrained responses of microbially desaturated sand under monotonic loading", J. Geotech. Geoenviron. Eng., 140(5). http://doi.org/10.1061/(ASCE)GT.1943-5606.0001082.
  28. He, J., Chu, J. and Liu, H. (2014), "Undrained shear strength of desaturated loose sand under monotonic shearing", Soils Found., 54(4), 910-916. http://doi.org/10.1016/j.sandf.2014.06.020.
  29. He, J., Gao, Y.F., Gu, Z.X., Chu, J. and Wang, L.Y. (2020), "Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand", J. Mater. Civ. Eng., 32(5). http://doi.org/10.1061/(ASCE)MT.1943-5533.0003100.
  30. Imran, M. A., Nakashima, K., Evelpidou, N. and Kawasaki, S. (2019), "Factors affecting the urease activity of native ureolytic bacteria isolated from coastal areas", Geomech Eng., 17(5), 421-427. http://doi.org/10.12989/gae.2019.17.5.421.
  31. Indraratna, B., Muttuvel, T., Khabbaz, H. and Armstrong, R. (2008), "Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion", J. Geotech. Geoenviron. Eng., 134(6), 837-844. http://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(837).
  32. International Organization for Standardization (ISO) (1984), Water quality -- Determination of calcium content -- EDTA titrimetric method, ISO 6058:1984.
  33. Ivanov, V. and Chu, J. (2008), "Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ", Rev. Environ. Sci. Biotechnol., 7(2), 139-153. http://doi.org/10.1007/s11157-007-9126-3.
  34. Jiang, N.J., Yoshioka, H., Yamamoto, K. and Soga, K. (2016), "Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP)", Ecol. Eng., 90, 96-104. http://doi.org/10.1016/j.ecoleng.2016.01.073.
  35. Jiang, N. J. and Soga, K. (2017), "The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures", Geotechnique, 67(1), 42-55. http://doi.org/10.1680/jgeot.15.P.182.
  36. Jiang, N. J., Soga, K. and Kuo, M. (2017), "Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures", J. Geotech. Geoenviron. Eng., 143(3), 04016100. http://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
  37. Jiang, N. J., Tang, C., Yin, L., Xie, Y. and Shi, B. (2019), "Applicability of microbial calcification method for sandy-slope surface erosion control", J. Mater. Civ. Eng., 31(11). http://doi.org/10.1061/(ASCE)MT.1943-5533.0002897.
  38. Ke, L. and Takahashi, A. (2012), "Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow", Soils Found., 52(4), 698-711. http://doi.org/10.1016/j.sandf.2012.07.010.
  39. Ke, L. and Takahashi, A. (2014), "Triaxial erosion test for evaluation of mechanical consequences of internal erosion", Geotech. Test. J., 37(2). http://doi.org/10.1520/GTJ20130049.
  40. Khilar, K.C., Fogler, H.S. and Gray, D.H. (1985), "Model for piping-plugging in earthen structures", J. Geotech. Eng., 111(7), 833-846. http://doi.org/10.1061/(ASCE)0733-9410(1985)111:7(833).
  41. Kim, Y., Kwon, T. and Kim, S. (2017), "Measuring elastic modulus of bacterial biofilms in a liquid phase using atomic force microscopy", Geomech. Eng., 12(5), 863-870. http://doi.org/10.12989/gae.2017.12.5.863.
  42. Kim, Y., Park, T. and Kwon, T. (2019), "Engineered bioclogging in coarse sands by using fermentation-based bacterial biopolymer formation", Geomech. Eng., 17(5), 485-496. http://doi.org/10.12989/gae.2019.17.5.485.
  43. Krajewska, B. (2009), "Ureases I. Functional, catalytic and kinetic properties: A review", J. Mol. Catal. B. Enzym., 59(1), 9-21. http://doi.org/10.1016/j.molcatb.2009.01.003.
  44. Kwon, Y., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behavior of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. http://doi.org/ 10.12989/gae.2019.17.5.453.
  45. Lee, S., Im, J., Cho, G.C. and Chang, I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. http://doi.org/ 10.12989/gae.2019.17.5.445.
  46. Liu, B., Zhu, C., Tang, C., Xie, Y., Yin, L., Cheng, Q. and Shi, B. (2020), "Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP)", Eng. Geol., 264. http://doi.org/10.1016/j.enggeo.2019.105389.
  47. Moffat, R.M., Fannin, R.J. and Garner, S.J. (2011), "Spatial and temporal progression of internal erosion in cohesionless soil", Can. Geotech. J., 48(3), 399-412. http://doi.org/10.1139/T10-071.
  48. Naufila and Sreevidhya, V. (2019), "Internal erosion control in sand-gravel mixtures using MICP", Int. J. Eng. Res. Mech. Civ. Eng., 4(4), 15-20.
  49. Neupane, D., Yasuhara, H., Kinoshita, N. and Unno, T. (2013), "Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique", J. Geotech. Geoenviron. Eng., 139(12), 2201-2211. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000959.
  50. Neupane, D., Yasuhara, H., Kinoshita, N. and Ando, Y. (2015), "Distribution of mineralized carbonate and its quantification method in enzyme mediated calcite precipitation technique", Soils Found., 55(2), 447-457. http://doi.org/10.1016/j.sandf.2015.02.018.
  51. Nikseresht, F., Landi, A., Sayyad, G., Ghezelbash, G. and Schulin, R. (2020), "Sugarecane molasse and vinasse added as microbial growth substrates increase calcium carbonate content, surface stability and resistance against wind erosion of desert soils", J. Environ. Manage., 268, 110639. http://doi.org/10.1016/j.jenvman.2020.110639.
  52. Peng, J., Tsai, W. and Chou, C. (2001), "Surface characteristics of Bacillus cereus and its adhesion to stainless steel", Int. J. Food Microbiol., 65(1), 105-111. http://doi.org/10.1016/S0168-1605(00)00517-1.
  53. Proto, C.J., Dejong, J.T. and Nelson, D.C. (2016), "Biomediated permeability reduction of saturated sands", J. Geotech. Geoenviron. Eng., 142(12), 04016073. http://doi.org/10.1061/(ASCE)GT.1943-5606.0001558.
  54. Salifu, E., Maclachlan, E., Iyer, K.R., Knapp, C.W. and Tarantino, A. (2016), "Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation", Eng. Geol., 201(4), 96-105. http://doi.org/10.1016/j.enggeo.2015.12.027.
  55. Saracho, A.C. and Haigh, S.K. (2018), "Experimental optimization of microbially induced calcite precipitation (MICP) for contact erosion control in earth dams", Proceedings of the 9th International Conference on Scour and Erosion (ICSE 2018), Taipei, Taiwan, November.
  56. Shahin, M.A., Jamieson, K. and Cheng, L. (2020), "Microbial-induced carbonate precipitation for coastal erosion mitigation of sandy slopes", Geotech. Lett., 10(2), 1-5. http://doi.org/10.1680/jgele.19.00093.
  57. Thullner, M. (2010), "Comparison of bioclogging effects in saturated porous media within one- and two-dimensional flow systems", Ecol. Eng., 36(2), 176-196. http://doi.org/10.1016/j.ecoleng.2008.12.037.
  58. Van Paassen, L.A., Ghose, R., Der Linden, T.J., Der Star, W.R. and Van Loosdrecht, M.C. (2010), "Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment", J. Geotech. Geoenviron. Eng., 136(12), 1721-1728. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
  59. Wang, X., Tao, J., Bao, R., Tran, T.V. and Tuckerkulesza, S. (2018), "Surficial soil stabilization against water-induced erosion using polymer-modified microbially induced carbonate precipitation", J. Mater. Civ. Eng., 30(10), 04018267. http://doi.org/10.1061/(ASCE)MT.1943-5533.0002490.
  60. Wu, C., Chu, J., Wu, S. and Hong, Y. (2019), "3D characterization of microbially induced carbonate precipitation in rock fracture and the resulted permeability reduction", Eng. Geol., 249, 23-30. http://dx.doi.org/10.1016/j.enggeo.2018.12.017.
  61. Xiao, M. and Shwiyhat, N. (2012), "Experimental investigation of the effects of suffusion on physical and geomechanic characteristics of sandy soils", Geotech. Test. J., 35(6), 890-900. http://doi.org/10.1520/GTJ104594.
  62. Xiao, P., Liu, H., Xiao, Y., Stuedlein, A.W. and Evans, T.M. (2018), "Liquefaction resistance of bio-cemented calcareous sand", Soil Dyn. Earthq. Eng., 107, 9-19. http://doi.org/10.1016/j.soildyn.2018.01.008.
  63. Xiao, Y., Stuedlein, A. W., Ran, J. Y., Evans, T. M., Cheng, L., Liu, H. L., Van Paassen, L. A. and Chu, J. (2019), "Effect of particle shape on strength and stiffness of biocemented glass beads", J. Geotech. Geoenviron. Eng., 145(11). http://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
  64. Zhao, Q., Li, L., Li, C., Li, M., Amini, F. and Zhang, H. (2014), "Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease", J. Mater. Civ. Eng., 26(12). http://doi.org/10.1061/(ASCE)MT.1943-5533.0001013.
  65. Zomorodian, S. M., Ghaffari, H. and Okelly, B.C. (2019), "Stabilisation of crustal sand layer using biocementation technique for wind erosion control", Aeolian Res., 40, 34-41. http://doi.org/10.1016/j.aeolia.2019.06.001.