DOI QR코드

DOI QR Code

Collapse mechanism estimation of a historical masonry minaret considered soil-structure interaction

  • Altiok, Taha Yasin (Department of Civil Engineering, Manisa Celal Bayar University) ;
  • Demir, Ali (Department of Civil Engineering, Manisa Celal Bayar University)
  • Received : 2020.10.28
  • Accepted : 2021.05.21
  • Published : 2021.08.25

Abstract

Cultures and lifestyles of past communities can be transferred to the next generations through historical structures. Accordingly, these structures should be carefully preserved against devastating events i.e. earthquakes, wind, and fire. Seismic performances of historical structures can be determined with destructive and nondestructive methods. As destructive methods are quite difficult and complex, easier and reliable methods should be used to determine the seismic behaviors of these structures. In this study, the seismic behavior of the historical Lala Mehmet Pasha minaret is investigated by considering Soil-Structure Interaction (SSI). Dynamical properties of the minaret are experimentally obtained with the operational modal analysis (OMA) method and the initial finite element (FE) model is updated. Embedded and SSI models are generated by Abaqus, then linear (LTH) and nonlinear time history (NLTH) analyses are performed. As a result of analyses, displacements, damage, and stress distributions are obtained and interpreted. These analyses show that SSI is quite effective on the structural behavior and results obtained from the nonlinear analysis are more realistic than that of linear analysis.

Keywords

References

  1. ABAQUS (2012), Simulia Inc., Providence, Rhode Island, U.S.A.
  2. Altunisik, A.C., Bayraktar, A. and Genc, A.F. (2016), "A study on seismic behaviour of masonry mosques after restoration", Earthq. Struct., 10(6), 1331-1346. http://dx.doi.org/10.12989/eas.2016.10.6.1331.
  3. ARTeMIS (2004), Ambient Response Testing and Modal Identification Software ARTeMIS Extractor Pro 3.0., Structural Vibration Solutions A/S Aalborg East, Denmark. http://www.svibs.com
  4. Asikoglu, A., Avsar, O., Lourenco, P.B. and Silva, L.C. (2019), "Effectiveness of seismic retrofitting of a historical masonry structure: Kutahya Kursunlu Mosque, Turkey", B. Earthq. Eng., 17, 3365-3395. https://doi.org/10.1007/s10518-019-00603-6.
  5. Bartoli, G., Betti, M., Maria Marra, A. and Monchetti, S. (2017), "Semiempirical Formulations for Estimating the Main Frequency of Slender Masonry Towers", J. Perform. Construct. Facil., 31, 04017025-1. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001017
  6. Bayraktar, A., Altunisik, A.C. and Muvafik, M. (2014), "Damages of minarets during Ercis, and Edremit earthquakes, 2011 in Turkey", Smart Struct. Syst., 14(3), 479-499. http://dx.doi.org/10.12989/sss.2014.14.3.479.
  7. Bayraktar, A., Altunisik, A.C., Sevim, B., Turker, T., Akkose, M. and Coskun, N. (2008), "Modal analysis, experimental validation, and calibration of a historical masonry minaret", J. Test. Eval., 36(6), 516-524. https://doi.org/10.1520/JTE101677.
  8. Bayraktar, A., Calik, I., Turker, T. and Ashour, A. (2018), "Restoration effects on experimental dynamic characteristics of masonry stone minarets", Mater Struct, 51(141). https://doi.org/10.1617/s11527-018-1272-2.
  9. Ben, J. and Papan, D. (2011), "Dynamic modeling and testing of cable - stayed pedestrian bridge", Proceedings of the 8th International Conference on Structural Dynamics, Leuven, Belgium, July.
  10. Bernardeschi, K., Padovani, C. and Pasquinelli, G. (2004), "Numerical modelling of the structural behaviour of Buti's bell tower", J. Cult. Herit., 5(4), 371-378. https://doi.org/10.1016/j.culher.2004.01.004.
  11. Cakir, F. (2014), "Seismic performance of the historical masonry clock tower and influence of the adjacent walls", Earthq. Struct., 7(2), 217-231. https://doi.org/10.12989/eas.2014.7.2.217.
  12. Calayir, Y., Sayin, E. and Yon, B. (2012), "Performance of structures in the rural area during the March 8, 2010 Elazig-Kovancilar earthquake", Nat. Hazards, 61(2), 703-717. https://doi.org/10.1007/s11069-011-0056-6.
  13. Camata, G., Cifelli, L., Spacone, E., Conte, J. and Torrese, P. (2008), "Safety analysis of the bell tower of S. Maria Maggiore Cathedral in Guardiagrele (Italy)", 14th World Conference on Earthquake Engineering, Beijing, China, October.
  14. Casolo, S., Diana, V. and Uva, G. (2017), "Influence of soil deformability on the seismic response of a masonry tower", Bull. Earthquake Eng., 15(5), 1991-2014. https://doi.org/10.1007/s10518-016-0061-y.
  15. Chopra, A.K. (2020a), Dynamics of Structures, Theory and Applications to Earthquake EngineeringPearson Education Limited, U.K.
  16. Chopra, A.K. (2020b), Earthquake Engineering for Concrete Dams: Analysis, Design, and Evaluation, JohnWiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, U.S.A.
  17. Demir, A., Nohutcu, H., Ercan, E., Hokelekli, E. and Altintas, G. (2016), "Effect of model calibration on seismic behaviour of a historical mosque", Struct. Eng. Mech., 60(5), 749-760. http://dx.doi.org/10.12989/sem.2016.60.5.749.
  18. Dogangun, A., Sezen, H., Tuluk, O.I., Livaoglu, R. and Acar, Ramazan (2007), "Traditional Turkish Masonry Monumental Structures and their Earthquake Response", Int. J. Archit. Heritage, 1(3), 251-271. http://dx.doi.org/10.1080/15583050701436980.
  19. Dooms, D., Degrande, G., De Roeck, G. and Reynders, E. (2006), "Finite element modelling of a silo based on experimental modal analysis", Eng. Struct., 28(4), 532-542. https://doi.org/10.1016/j.engstruct.2005.09.008.
  20. Elyamani, A., Roca, P.F., Caselles, O. and Clapes, J. (2019), "Evaluation of mallorca cathedral seismic behavior using different analysis techniques", Mediterranean Archaeology Archaeometry, 19(1), 41-60. https://doi.org/10.5281/zenodo.2585970.
  21. Ertek, E. and Fahjan, Y.M. (2007), "Structural systems of Ottoman minarets: Classification, modelling and analysis", Sixth National Conference on Earthq., Istanbul, Turkey, June.
  22. Fabbrocino, F. (2016), "Estimation of the natural periods of existing masonry towers through empirical procedure", Int. J. Sustainable Mater. Struct. Syst., 2(3-4), 250-261.
  23. Fathi, A., Sadeghi, A., Emami Azadi, M.R. and Hoveidaie, N. (2019), "Assessing seismic behavior of a masonry historic building considering soil-foundation-structure interaction (Case Study of Arge-Tabriz)", Int. J. Archit. Heritage, 14(6), 795-810. https://doi.org/10.1080/15583058.2019.1568615.
  24. Gattesco, N., Amadio, C. and Bedon, C. (2015), "Experimental and numerical study on the shear behavior of stone masonry walls strengthened with GFRP reinforced mortar coating and steel-cord reinforced repointing", Eng. Struct., 90, 143-157. https://doi.org/10.1016/j.engstruct.2015.02.024
  25. Haciefendioglu, K. (2010), "Seasonally frozen soil's effect on stochastic response of masonry minaret-soil interaction systems to random seismic excitation", Cold Reg. Sci. Technol., 60(1), 66-74. https://doi.org/10.1016/j.coldregions.2009.08.007.
  26. Haciefendioglu, K., Alpaslan, E., Demir, G., Dinc, B. and Birinci, F. (2018), "Experimental modal investigation of scaled minaret embedded in different soil types", Gradev., 70(2), 201-212. https://doi.org/10.14256/JCE.1855.2016.
  27. Hokelekli, E. and Al-Helwani, A. (2019), "Effect of soil properties on the seismic damage assessment of historical masonry minaret-soil interaction systems", Struct. Des. Tall Spec, Build., 29(2), e1694. https://doi.org/10.1002/tal.1694.
  28. Izzuddin, B.A., Karayannis, C.G. and Elnashai, A.S. (1994), "Advanced nonlinear formulation for reinforced concrete beam-columns", J. Struct. Eng.-ASCE, 120(10), 2913-2934. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2913)
  29. Karayannis, C.G., lzzuddin, B.A. and Elnashai, A.S. (1994), "Application of adaptive analysis to reinforced concrete frames", J. Struct. Eng.-ASCE, 120(10), 2935-2957. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2935)
  30. Kouris, E.G., Kouris, L.A.S., Konstantinidis, A.A., Karayannis, C.G. and Aifantis, E.C. (2021), "Assessment and fragility of Byzantine unreinforced masonry towers", Infrastruct., 6(40). https://doi.org/10.3390/infrastructures6030040
  31. Livaoglu, R., Basturk, M.H., Dogangun, A. and Serhatoglu, C. (2016), "Effect of geometric properties on dynamic behavior of historic masonry minaret", KSCE J. Civ. Eng., 20(6), 2392-2402. https://doi.org/10.1007/s12205-016-0622-2.
  32. Lopez-Almansa, F., Alfarah, B. and Oller, S. (2014), "Numerical simulation of RC frame testing with damaged plasticity model. Comparison with simplified models", 2. European Conference on Earthquake Engineering and seismology, Istanbul, Turkey, August.
  33. Lourenco, P.B. (1996), Computational Strategies for Masonry Structures, Ph.D. Dissertation, Delft University Press. Netherlands.
  34. Luz, E., Gurr-Beyer, C. and Stocklin, W. (1984), "Experimental investigation of natural frequencies and modes of the HDR nuclear power plant by means of microtremor excitation", 8th World Conference on Earthquake Engineering, San Francisco, California, U.SA. April.
  35. Maheswari, R.U., Boominathan, A. and Dodagoudar, G.R. (2010), "Seismic site classification and site period mapping of Chenna city using geophysical and geotechnical data", J. Appl. Geophys., 72(3), 152-168. https://doi.org/10.1016/j.jappgeo.2010.08.002.
  36. Milani, G., Valente, M. and Fagone, M., Rotunno, T. (2019), "Advanced nonlinear numerical modeling of masonry groin vaults of major historical importance: St John Hospital case study in Jerusalem", Eng. Struct., 194, 458-476, https://doi.org/10.1016/j.engstruct.2019.05.021.
  37. Muvafik, M. (2014), "Field investigation and seismic analysis of a historical brick masonry minaret damaged during the Van Earthquakes in 2011", Earthq. Struct., 6(5), 457-472. https://doi.org/10.12989/eas.2014.6.5.457.
  38. Nohutcu, H., Demir, A., Ercan, E., Hokelekli, E. and Altintas, G. (2015), "Investigation of a historic masonry structure by numerical and Operational Modal Analyses", Struct. Des. Tall Special Build., 24(13), 821-834. https://doi.org/10.1002/tal.1213.
  39. Nohutcu, H., Hokelekli, E., Ercan, E., Demir, A. and Altintas, G. (2017), "Collapse mechanism estimation of a historical slender", Struct. Eng. Mech., 64(5), 653-660. https://doi.org/10.12989/sem.2017.64.5.653.
  40. Pitilakis, D. and Karatzetzou, A. (2015), "Dynamic stiffness of monumental flexible masonry foundations", Bull. Earthq. Eng., 13(1), 67-82. https://doi.org/10.1007/s10518-014-9611-3.
  41. Portioli, F., Mammana, O., Landolfo, R., Mazzolani, F.M., Krstevska, L., Tashkov, L. and Gramatikov, K. (2011), "Seismic retrofitting of Mustafa Pasha Mosque in Skopje: finite element analysis", J. Earthq. Eng., 15(4), 620-639. https://doi.org/10.1080/13632469.2010.532580.
  42. Rayhani, M.H. and El Naggar, M.H. (2008), "Numerical modeling of seismic response of rigid foundation on soft soil", Int. J. Geomech, 8(6), 336. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:6(336).
  43. Resta, M., Fiore, A. and Monaco, P. (2013), "Non-linear finite element analysis of masonry towers by adopting the damage plasticity constitutive model", Adv. Struct. Eng., 16(5), 791-803. https://doi.org/10.1260/1369-4332.16.5.791.
  44. Seed, H.B. and Idriss, I.M. (1970), Soil Moduli and Damping Factors for Dynamic Response Analyses, Report No. EERC 70-10, Earthquake Engineering Research Center, University of California, Berkeley, U.S.A.
  45. Shakya, M., Varum, H., Vicente, R. and Costa, A. (2014), "Empirical formulation for Estimating the fundamental frequency of slender masonry structures", Int. J. Archit. Heritage, 10(1), 55-66.
  46. Silva, F., Ceroni, F., Sica, S. and Silvestri, F. (2018), "Non-linear analysis of the Carmine Bell Tower under seismic actions accounting for soil-foundation-structure interaction", Bull. Earthq. Eng., 16, 2775-2808. https://doi.org/10.1007/s10518-017-0298-0.
  47. Tashkov, L.A., Krstevska, L.S., Safak, E., Cakti, E., Edincliler, A. and Erdik, M. (2012), "Comparative study of large and medium scale mosque models tested on seismic shaking table", 15th World Conference, Lisbon, Portugal, January.
  48. Turk, A.M. and Coskun, C. (2012), "Seismic behaviour and retrofit of historic masonry minaret", Gradev., 64(1), 39-45. https://doi.org/10.14256/JCE.629.2011.
  49. Turkeli, E. (2020), "Dynamic seismic and wind response of masonry minarets", Period Polytech-Civil., 64(2), 353-369. https://doi.org/10.3311/PPci.15035.
  50. Valente, M. and Milani, G. (2016), "Non-linear dynamic and static analyses on eight historical masonry towers in the North-East of Italy", Eng. Struct., 114, 241-270. https://doi.org/10.1016/j.engstruct.2016.02.004.