Acknowledgement
The authors would like to acknowledge the financially supported by the National Natural Science Foundation of China (51408489, 51248007, 51308448, 51301136 and 51508464), the Shanxi National Science Foundation of China (2017JM5007), China Scholarship Council and the Fundamental Research Funds for the Central Universities (3102014JCQ01047).
References
- Adam, J.M., Parisi, F., Sagaseta, J. and Lu, X. (2018), "Research and practice on progressive collapse and robustness of building structures in the 21st century", Eng. Struct., 173, 122-149. https://doi.org/10.1016/j.engstruct.2018.06.082.
- Brunesi, E., Nascimbene, R., Parisi, F. and Augenti, N. (2015), "Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis", Eng. Struct., 104, 65-79. https://doi.org/10.1016/j.engstruct.2015.09.024.
- EN 1993-1-8 (2005), EN 1993-1-8: Design of Steel Structures-Part 1.8: Design of Joints, European Committee for Standardisation, Brussels, Belgium.
- Faella, C., Piluso, V. and Rizzano, G. (1998), "Experimental analysis of bolted connections: Snug versus preloaded bolts", J. Struct. Eng., 124(7), 765-774. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:7(765).
- Gioncu, V. and Petcu, D. (1997), "Available rotation capacity of wide-flange beams and beam-columns Part 1. Theoretical approaches", J. Constr. Steel Res., 43(1-3), 161-217. https://doi.org/10.1016/S0143-974X(97)00044-8.
- Gong, Y. (2014), "Ultimate tensile deformation and strength capacities of bolted-angle connections", J. Constr. Steel Res., 100, 50-59. https://doi.org/10.1016/j.jcsr.2014.04.029.
- GSA (2013), Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects, General Services Administration, Washington (DC), USA.
- Jiang, B., Li, G., Li, L. and Izzuddin, B.A. (2017), "Simulations on progressive collapse resistance of steel moment frames under localized fire", J. Constr. Steel Res., 138, 380-388. https://doi.org/10.1016/j.jcsr.2017.05.018.
- Kim, J. and Kim, T. (2009), "Assessment of progressive collapse-resisting capacity of steel moment frames", J. Constr. Steel Res., 65(1), 169-179. https://doi.org/10.1016/j.jcsr.2008.03.020.
- Li, H., Cai, X., Zhang, L., Zhang, B. and Wang, W. (2017), "Progressive collapse of steel moment-resisting frame subjected to loss of interior column: Experimental tests", Eng. Struct., 150, 203-220. https://doi.org/10.1016/j.engstruct.2017.07.051.
- Li, S., Kose, M.M., Shan, S. and Sezen, H. (2019), "Modeling methods for collapse analysis of reinforced concrete frames with infill walls", J. Struct. Eng., 145(4), 4019011. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002285.
- Liu, C., Tan, K.H. and Fung, T.C. (2015), "Component-based steel beam-column connections modelling for dynamic progressive collapse analysis", J. Constr. Steel Res., 107, 24-36. https://doi.org/10.1016/j.jcsr.2015.01.001.
- Meng, B., Zhong, W., Hao, J., Song, X. and Tan, Z. (2019), "Calculation of the resistance of an unequal span steel substructure against progressive collapse based on the component method", Eng. Struct., 182, 13-28. https://doi.org/10.1016/j.engstruct.2018.12.053.
- Moradi, S. and Alam, M.S. (2015), "Finite-element simulation of posttensioned steel connections with bolted angles under cyclic loading", J. Struct. Eng., 142(1), 4015075. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001336.
- Pirmoz, A. and Liu, M.M. (2016), "Finite element modeling and capacity analysis of post-tensioned steel frames against progressive collapse", Eng. Struct., 126, 446-456. https://doi.org/10.1016/j.engstruct.2016.08.005.
- Quan, G., Huang, S.S. and Burgess, I. (2017), "The behaviour and effects of beam-end buckling in fire using a component-based method", Eng. Struct., 139, 15-30. https://doi.org/10.1016/j.engstruct.2017.01.076.
- Rex, C.O. and Easterling, W.S. (2003), "Behavior and modeling of a bolt bearing on a single plate", J. Struct. Eng., 129(6), 792-800. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(792).
- Ricles, J.M., Sause, R., Peng, S.W. and Lu, L.W. (2002), "Experimental evaluation of earthquake resistant posttensioned steel connections", J. Struct. Eng., 128(7), 850-859. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(850).
- Rojas, P., Ricles, J.M. and Sause, R. (2005), "Seismic performance of post-tensioned steel moment resisting frames with friction devices", J. Struct. Eng., 131(4), 529-540. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:4(529).
- Tsitos, A. (2010), "Experimental and numerical investigation of the progressive collapse of steel frames", PhD dissertation, University at Buffalo, The State University of New York, Buffalo.
- Tsitos, A., Mosqueda, G., Filiatrault, A. and Reinhorn, A.M. (2008). "Experimental investigation of progressive collapse of steel frames under multi-hazard extreme loading", Proceedings of the 14th World Conference on Earthquake Engineering.
- UFC 4-023-03 (2009), Design of buildings to resist progressive collapse, Department of Defense, Washington (DC), USA.
- Yang, B. and Tan, K.H. (2012), "Robustness of bolted-angle connections against progressive collapse: Experimental tests of beam-column joints and development of component-based models", J. Struct. Eng., 139(9), 1498-1514. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000749.
- Yang, B., Tan, K.H. and Xiong, G. (2015), "Behaviour of composite beam-column joints under a middle-column-removal scenario: Component-based modelling", J. Constr. Steel Res., 104, 137-154. https://doi.org/10.1016/j.jcsr.2014.10.003.
- Yu, H., Burgess, I.W., Davison, J.B. and Plank, R.J. (2009), "Experimental investigation of the behaviour of fin plate connections in fire", J. Constr. Steel Res., 65(3), 723-736. https://doi.org/10.1016/j.jcsr.2008.02.015.
- Zhu, Y.F., Chen, C.H., Keer, L.M., Huang, Y. and Yao, Y. (2019), "Structural response and resilience of posttensioned steel frames under column loss", J. Constr. Steel Res., 158, 107-119. https://doi.org/10.1016/j.jcsr.2019.03.019.
- Zhu, Y.F., Chen, C.H., Yao, Y., Keer, L.M. and Huang, Y. (2018), "Dynamic increase factor for progressive collapse analysis of semi-rigid steel frames", Steel Compos. Struct., 28(2), 209-221. https://doi.org/10.12989/scs.2018.28.2.209.