References
- Ahmadi, H. and Foroutan, K. (2019), "Combination resonance analysis of FG porous cylindrical shell under two-term excitation", Steel Compos. Struct., 32(2), 253-264. http://dx.doi.org/10.12989/scs.2019.32.2.253.
- Ahmadi, H. and Foroutan, K. (2020), "Nonlinear static and dynamic thermal buckling analysis of imperfect multilayer FG cylindrical shells with an FG porous core resting on nonlinear elastic foundation", J. Therm. Stresses, 1-21. https://doi.org/10.1080/01495739.2020.1727802.
- Anh, V.T.T., Bich, D.H. and Duc, N.D. (2015), "Nonlinear stability analysis of thin FGM annular spherical shells on elastic foundations under external pressure and thermal loads", Eur. J. Mech. A-Solid, 50, 28-38. https://doi.org/10.1016/j.euromechsol.2014.10.004.
- Ansari, R., Torabi, J. and Shojaei, M.F. (2016), "Vibrational analysis of functionally graded carbon nanotube-reinforced composite spherical shells resting on elastic foundation using the variational differential quadrature method", Eur. J. Mech. A-Solid., 60, 166-182. https://doi.org/10.1016/j.euromechsol.2016.07.003.
- Babaei, H., Eslami M.R. and Khorshidvand, A.R. (2020), "Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane", J. Therm. Stresses, 43(1), 109-131. https://doi.org/10.1080/01495739.2019.1660600.
- Belica, T., Malinowski, M. and Magnucki, K. (2011), "Dynamic stability of an isotropic metal foam cylindrical shell subjected to external pressure and axial compression", J. Appl. Mech., 78(4), 041003. https://doi.org/10.1115/1.4003768.
- Bich, D.H. and Dung, D.V. (2012), "Nonlinear static and dynamic buckling analysis of functionally graded shallow spherical shells including temperature effects", Compos. Struct., 94(9), 2952-2960. https://doi.org/10.1016/j.compstruct.2012.04.012 Get.
- Bich, D.H. and Hoang, V.T. (2011), "Non-linear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects", Int. J. Nonlinear Mech., 46(9) 1195-1204. https://doi.org/10.1016/j.ijnonlinmec.2011.05.015Get.
- Boroujerdy, M.S. and Eslami, M.R. (2015), "Unsymmetrical buckling of piezo-FGM shallow clamped spherical shells under thermal loading", J. Therm. Stresses, 38(11) 1290-1307. https://doi.org/10.1080/01495739.2015.1073532.
- Birman V. (1997), "Theory and comparison of the effect of composite and shape memory along stiffness on stability of composite shells and plates", Int. J. Mech. Sci., 39(10), 119-149. https://doi.org/10.1016/S0020-7403(97)00008-8.
- Budiansky, B. (1962), "Axisymmetric dynamic buckling of clamped shallow spherical shells", NASA TN 1510, 597-606.
- Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017.
- Duc. N.D. and Thang, P.T. (2015), "Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations", Aerosp. Sci. Technol., 40, 115-127. https://doi.org/10.1016/j.ast.2014.11.005.
- Eslami, M.R., Ghorbani, H.R. and Shakeri, M. (2001), "Thermoelastic buckling of thin spherical shells", J. Therm. Stresses, 24(12), 1177-1198. https://doi.org/10.1080/014957301753251746.
- Foroutan, K., Shaterzadeh, A.R. and Ahmadi, H. (2020), "Nonlinear static and dynamic hygrothermal buckling analysis of imperfect functionally graded porous cylindrical shells", Appl. Math. Model., 77, 539-553. https://doi.org/10.1016/j.apm.2019.07.062.
- Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., 21(5), 999-1016. http://dx.doi.org/10.12989/scs.2016.21.5.999.
- Gao, K., Gao, W., Wu, B., Wu, D. and Song, C. (2018), "Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales", Thin Wall. Struct., 125, 281-293. https://doi.org/10.1016/j.tws.2017.12.039.
- Ganapathi, M. and Varadan, T.K. (1995), "Dynamic buckling of laminated anisotropic spherical caps", J. Appl. Mech. Mar., 62(1), 13-19. https://doi.org/10.1115/1.2895879.
- Ganapathi, M. and Varadan, T.K. (1982), "Dynamic buckling of orthotropic shallow spherical shells", Comput. Struct., 15(5), 517-520. https://doi.org/10.1016/0045-7949(82)90003-7.
- Ghadiri, M. and SafarPour, H. (2017), "Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment", J. Therm. Stresses, 40(1), 55-71. https://doi.org/10.1080/01495739.2016.1229145.
- Huang, N.C. (1964), "Unsymmetrical buckling of thin shallow spherical shells", J. Appl. Mech., 31(3), 447-457. https://doi.org/10.1115/1.3629662.
- Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. http://dx.doi.org/10.12989/scs.2015.18.3.693.
- Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on kerr foundation", Steel Compos. Struct., 29(3), 349-362. http://dx.doi.org/10.12989/scs.2018.29.3.349.
- Lakes, R. (1996), "Cellular solid structures with unbounded thermal expansion", J. Mater. Sci. Lett., 15(6), 475-477. https://doi.org/10.1007/BF00275406.
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
- Magnucki, K., Malinowski, M. and Kasprzak, J. (2006), "Bending and buckling of a rectangular porous plate", Steel Compos. Struct., 6(4), 319-333. http://dx.doi.org/10.12989/scs.2006.6.4.319.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. http://dx.doi.org/10.12989/scs.2020.35.4.567.
- Mushtari X.M. and Galimov K.Z. (1957), Nonlinear theory of elastic shells, Tatknigoizdat, Kazan.
- Oghibalov, P.M. (1963), Dynamics and stability of shells, Moscow.
- Prakash, T., Sundararajan, N. and Ganapathi, M. (2007), "On the nonlinear axisymmetric dynamic buckling behavior of clamped functionally graded spherical caps", J. Sound Vib., 299(1-2) 36-43. https://doi.org/10.1016/j.jsv.2006.06.060.
- Quan, T.Q. and Duc, N.D. (2016), "Nonlinear vibration and dynamic response of shear deformable imperfect functionally graded double-curved shallow shells resting on elastic foundations in thermal environments", J. Therm. Stresses. 39(4), 437-459. https://doi.org/10.1080/01495739.2016.1158601.
- Shahsiah, R., Eslami, M.R. and Naj, R. (2006), "Thermal instability of functionally graded shallow spherical shell", J. Therm. Stresses, 29(8), 771-790. https://doi.org/10.1080/01495730600705406.
- Sun, J., Xu, X. and Lim, C.W. (2014), "Buckling of functionally graded cylindrical shells under combined thermal and compressive loads", J. Therm. Stresses, 37(3), 340-362. https://doi.org/10.1080/01495739.2013.869143.
- Tillman, S.C. (1970), "On the buckling behaviour of shallow spherical caps under a uniform pressure load", Int. J. Solids Struct., 6(1), 37-52. https://doi.org/10.1016/0020-7683(70)90080-6.
- Uysal, M.U. (2016), "Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells", Steel Compos. Struct., 21(4), 849-862. http://dx.doi.org/10.12989/scs.2016.21.4.849.
- Wang, Y.Q., Liu, Y.F. and Yang, T.H. (2019b), "Nonlinear thermo-electro-mechanical vibration of functionally graded piezoelectric nanoshells on Winkler-Pasternak foundations via nonlocal Donnell's nonlinear shell theory", Int. J. Struct. Stab. Dynam., 19(9), 1950100. https://doi.org/10.1142/S0219455419500998.
- Wang, Y.Q., Liu, Y.F. and Zu, J.W. (2019a), "Nonlinear vibration of magnetoelectroelastic nanoscale shells embedded in elastic media in thermoelectromagnetic fields", J. Intel. Mat. Syst. Str., 30(15), 2331-2347. https://doi.org/10.1177/1045389X19862382.
- Wang, Y.Q., Liu, Y.F. and Zu, J.W. (2019e), "On scale-dependent vibration of circular cylindrical nanoporous metal foam shells", Microsyst. Technol., 25(7), 2661-2674. https://doi.org/10.1007/s00542-018-4262-y.
- Wang, Y.Q. and Teng, M.W. (2019), "Vibration analysis of circular and annular plates made of 3D graphene foams via Chebyshev-Ritz method", Aerosp. Sci. Technol., 95, 105440. https://doi.org/10.1016/j.ast.2019.105440.
- Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aerosp. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003.
- Wang, Y.Q., Ye,C. and Zhu, J. (2020), "Chebyshev collocation technique for vibration analysis of sandwich cylindrical shells with metal foam core", ZAMM-J. Appl. Math. Mech., 100(5), e201900199. https://doi.org/10.1002/zamm.201900199.
- Wang, Y., Ye, C. and Zu, J.W. (2018), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Mech., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6.
- Wang, Y.Q., Ye, C. and Zu, J.W. (2019d), "Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions", Int. J. Mech. Mater. Des., 15(2), 333-344. https://doi.org/10.1007/s10999-018-9415-8.
- Wang, Y.Q. and Zhao, H.L. (2019), "Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method," Arch. Appl. Mech., 89(11), 2335-2349. https://doi.org/10.1007/s00419-019-01579-0.
- Wang, Y.Q., Zhao, H.L., Yang, T.H. and Zu, J.W. (2019c), "Thermo-hygro-mechanical bending and vibration of functionally graded material microbeams with microporosity defect", J. Therm. Stresses, 42(7), 815-834. https://doi.org/10.1080/01495739.2019.1587325.
- Wang, Y.Q. and Zhang, Z.Y. (2019), "Bending and buckling of three-dimensional graphene foam plates," Results Phys., 13, 102136. https://doi.org/10.1016/j.rinp.2019.02.072.
- Wang, Y.Q. and Zu, J.W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment," Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.
- Wunderlich, W. and Ursula, A. (2002), "Buckling behaviour of imperfect spherical shells", Int. J. Nonlin. Mech., 37(4-5), 589-604. https://doi.org/10.1016/0263-8231(95)00003-V.
- Yas, M.H. and Rahimi, S. (2020), "Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets", Appl. Math. Mech., 1-18. https://doi.org/10.1007/s10483-020-2634-6.
- Ye, Z.M. (1997), "The non-linear vibration and dynamic instability of thin shallow shells", J. Sound Vib., 202(3), 303-311. https://doi.org/10.1006/jsvi.1996.0827.
- Zhou, C., Zhang, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. http://dx.doi.org/10.12989/scs.2020.34.2.215.