DOI QR코드

DOI QR Code

Annual Analysis of the Agronomic Traits of Global Wheat Germplasms in the Korean Environment

국내환경에서 밀 유전자원의 연차간 농업특성 분석

  • Son, Jae-Han (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Yang, Jinwoo (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Kang, Chon-Sik (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Kim, Kyeong-Hoon (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Kim, Kyeong-Min (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Jeong, Han-Yong (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Park, Jinhee (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Son, Ji-Young (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Park, Tae-il (Wheat Research Team, National Institute of Crop Science, RDA) ;
  • Choi, Changhyun (Wheat Research Team, National Institute of Crop Science, RDA)
  • 손재한 (농촌진흥청 국립식량과학원 밀연구팀) ;
  • 양진우 (농촌진흥청 국립식량과학원 밀연구팀) ;
  • 강천식 (농촌진흥청 국립식량과학원 밀연구팀) ;
  • 김경훈 (농촌진흥청 국립식량과학원 밀연구팀) ;
  • 김경민 (농촌진흥청 국립식량과학원 밀연구팀) ;
  • 정한용 (농촌진흥청 국립식량과학원 밀연구팀) ;
  • 박진희 (농촌진흥청 국립식량과학원 밀연구팀) ;
  • 손지영 (농촌진흥청 국립식량과학원 밀연구팀) ;
  • 박태일 (농촌진흥청 국립식량과학원 밀연구팀) ;
  • 최창현 (농촌진흥청 국립식량과학원 밀연구팀)
  • Received : 2020.11.25
  • Accepted : 2021.02.19
  • Published : 2021.06.01

Abstract

Securing a range of wheat resources is of particular importance with respect to wheat breeding, as it provides a broad genetic foundation. Although wheat breeders have used different wheat germplasms as material resources in current breeding systems, the traits of most germplasms collected from foreign countries differ from the unique traits that have evolved in the Korean environment. In this study, conducted over a 2-year period (2018 and 2019), we therefore evaluated the agricultural traits 1,967 wheat germplasms collected not only in Korea but also worldwide. During the period from sowing to February, the average temperature in 2019 was greater than 1℃, whereas from March to June, the average temperature was approximately 0.9℃ higher in 2018. Compared with the growth recorded in 2018, the stem length in 2019 increased by approximately 20 cm in 2019, and there were notable differences heading date and maturation between 2018 and 2019. In 2019, the heading dates of 973 and 713 wheat resources were earlier and later than those in 2018, respectively. Moreover, stem length was found to be highly correlated with the heading date and maturation. In Korea, where the rainy season and tine of rice transplantation overlap with the time of wheat harvest, early flowering time with high grain yield has been the most important selection target with respect to wheat breeding. We anticipate that the findings of this study will provide would use a foundation for the selection of elite materials and the development of resource core-sets for Korean wheat breeding programs.

다양하고 우수한 밀의 유전자원을 확보하는 것은 앞으로 한국의 밀 육종에서 매우 중요한 임무이다. 따라서 본 연구는 한국뿐만 아니라 세계 60여개국으로부터 수집된 1967점의 유전자원을 확보하였고, 2018년부터 2019년까지 2년 동안 이들 자원에 대하여 특성 조사를 실시하였다. 최근 기후변화에 따라 고온과 이상기온 현상이 빈번하게 발생하고 있기 때문에, 한국의 환경에 적합하고, 특히 밀의 간장, 출수기, 성숙기 등 주요 농업 특성에 주목하였다. 2018년은 유수분얼기 및 출수기에 이상고온 현상이 나타났고, 2019년은 성숙기에 잦은 비로 인한 일조량 감소 현상이 있었다. 이와 같은 이유로 밀의 출수기와 성숙기의 변화가 확인이 되었다. 그러나 모든 자원이 같은 양상으로 변화하지는 않았다. 출수기와 성숙기가 빨라지거나 늦어졌고, 또한 기후에 상관없이 변화가 없는 밀도 있었다. 밀의 간장은 2019년이 2018년에 비해 평균 20 cm 증가하였다. 이 같은 이유는 2018년 월동기 기온의 상승이 원인일 것으로 생각되나 더욱 세밀한 연구가 필요하다. 또한 밀의 간장은 출수기와 성숙기와 상관관계를 보였고, 2018년과 2019년에 각각 35%와 20% 상관관계지수를 나타냈다. 이들 결과를 바탕으로 출수가 빠르고 성숙기간이 짧으며, 기후의 영향을 덜 받는 자원은 앞으로 한국의 밀 육종에 매우 유용하게 사용할 수 있을 것으로 생각된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(세부과제명: 유전자 교정 기술을 이용한 불량환경 극복 국내 밀 소재 개발, 협동 과제번호: PJ014823022021)에 의해 이루어진 것임.

References

  1. Baker, C. K., J. N. Gallagher, and J. L. Monteith. 2006. Daylight change and leaf appearance in winter wheat. Plant Cell and Environment 3(4) : 285 - 287. https://doi.org/10.1111/1365-3040.ep11581834
  2. Calderini, D. F. and G. A. Slafer. 1998. Changes in yield and yield stability in wheat during the 20th century. Field Crops Res. 57 : 335-354. https://doi.org/10.1016/S0378-4290(98)00080-X
  3. Fischer, R. A. 1984. Wheat. In: W.H. Smith, editor, Symposium on potential productivity of field crops under different environments. IRRI, Los Banos, Philippines. pp. 129-154.
  4. Fischer, R. A. and G. O. Edmeade. 2010. Breeding and cereal yield progress. Crop Sci. 50 : 85-98.
  5. Guedira, M., M. Xiong, Y. F. Hao, J. Johnson, S. Harrison, D. Marshall, and Brwon-Guedira. 2016. Heading date QTL in winter wheat (Triticum aestivum L.) coincide with major developmental genes VERNALIZATION1 and PHOTOPERIOD1. PLos One DOI: 10.1371/journal.pone.0154242.
  6. Howell, T. A., J. L. Steiner, A. D. Schneider, and S. R. Evett. 1995. Evapotranspiration of irrigated winter wheat. Southern High Plains. Trans. ASAE. 38 : 745-759. https://doi.org/10.13031/2013.27888
  7. Karim, M. D. H., and M. A. Jahan. 2013. Study of lodging resistance and its associated traits in bread wheat. ARPN J. Agric. Biol. Sci. 8 : 10.
  8. Khobra, R., S. Sareen, B. K. Meena, A. Kumar, V. Tiwari, and G. P. Singh. 2019. Exploring the traits for lodging tolerance in whet genotypes: a review. Physiol. Mol. Biol. Plants Doi. org/10.1007.s12298-018-0629-x. https://doi.org/10.1007.s12298-018-0629-x
  9. Kong, E., D. Liu, X. Guo, W. Yang, J. Sun, X. Li, K. Zhan, D. Cui, J. Lin, and A. Zhang. 2013. Anatomical and chemical characteristics associated with lodging resistance in wheat. Crop J. 1 : 43-49. https://doi.org/10.1016/j.cj.2013.07.012
  10. Law, C. N., A. J. Worland, and B. Giorgi. 1976. The genetic control of early-emergence time by chromosomes 5A and 5D of wheat. Heredity 36: 49-58. https://doi.org/10.1038/hdy.1976.5
  11. Okuno, A. K. Hirano, K. Asano, W. Takase, R. Masuda, and Y. Morinaka. 2014. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varities. PLoS ONE 9(2) : e86870. https://doi.org/10.1371/journal.pone.0086870
  12. Parry, M. L., C. Rosenzweig, A. Iglesias, M. Livermore, and G. Fischer. 2004. Effects of climate chang on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change. 14 : 53-67. https://doi.org/10.1016/j.gloenvcha.2003.10.008
  13. Pinera-Chavez, F. J., P. M. Berry, M. J. Foulkes, M. A. Jesson, and M. P. Reynolds. 2016. Avoiding lodging in irrigated spring wheat. I. Stem and root structural requirements. Field Crops Res. 196 : 325-336. https://doi.org/10.1016/j.fcr.2016.06.009
  14. Pinthus, M. J. 1967. Spread of the root system as an indicator for evaluating lodging resistance of wheat. Crop Sci. 7 : 107-110. https://doi.org/10.2135/cropsci1967.0011183X000700020005x
  15. Rural Development Administration (RDA). 2012. Standard of research and analysis for agricultural technology. pp. 339-365.
  16. Shin, S. H., K. H. Kim, J. H. Son, C. S. Kang, Y. K. Cheong, C. K. Lee, J. C. Park, and C. S. Park. 2014. Analysis of Semi-dwarf gene (Rht) Construction and its relationship with agronomic characteristics, pre-harvest sprouting, and fusarium head blight in Korean wheat cultivar. Journal of Agriculture & Life sciences 43(1) : 72-79.
  17. Simon, M. R., A. J. Worland, and P. C. Strucik. 2004. Influence of plant height and heading date on the expression of the resistance to Septoria tritici blotch in near isogeneic lines of wheat. Crop Sci. 44 : 2078-2085. https://doi.org/10.2135/cropsci2004.2078
  18. Sinclair, T. R. and P. D. Jamieson. 2008. Yield and grain number of wheat: A correlation or causal relationship? Author's response to "The importance of grain or kernel number in wheat: A reply to Sinclair and Jamieson" by R.A. Fischer. Field Crops Res. 105 : 22-26. https://doi.org/10.1016/j.fcr.2007.07.003
  19. Slafer, G. A. and J. L. Araus. 2007. Physiological traits for improving wheat yield under a wide range of conditions. In: Spiertz JHJ, Struik PC, van Laar HH, editors, Scale and complexity in plant systems research: Gene-plant-crop relations. Springer Media Dordrecht BV, The Netherlands. pp. 147-156.
  20. Slafer, G. A. and H. M. Rawson. 1994. Sensitivity of wheat phasic development to major environmental factors: a re-examination of some assumptions made by physiologists and modelers. Aust J. Plant Physiol. 21 : 393-426. https://doi.org/10.1071/PP9940393
  21. Son, J. H., Y. K. Cheong, J. C. Park, K. H. Kim, B. K. Kim, and C. S. Kang. 2017. Current Status of Wheat Allergy Research. Korean J. Breed. Sci. 49(2) : 57-64. https://doi.org/10.9787/kjbs.2017.49.2.57
  22. Sommer, R., M. Glazirina, T. Yuldashev, A. Otarov, M Ibraeva, L. Martynova, M. Bekenov, B. Kholov, N. Ibragimov, R. Kobilov, S. Karaev, M. Sultonov, F. Khasanova, M. Esanbekov, D. Mavlyanov, S. Isaev, S. Abdurahimov, R. Ikramov, L. Shezdyukova, and E. de Pauw. 2013. Impact of climate change on wheat productivity in central Asia. Agriculture, Ecosystems and Environment. 178 : 78-99. https://doi.org/10.1016/j.agee.2013.06.011
  23. Van Beuningen, L. T. and M. M. Kohli. 1990. Deviation from the regression of infection on heading and height as a measure of resistance to Septoria trici blotch on wheat. Plant Dis. 74 : 488-493. https://doi.org/10.1094/PD-74-0488
  24. Wang, J., J. Zhu, L. Qinqin, X. Li, T. Nianjun, Z. Li, B. Li, and A. Zhang. 2006. The effect of the anatomical structure and chemical components of the culm on lodging resistance in wheat. Sci Bull. 51(5) : 1-7.
  25. Xiang, D. B., G. Zhao, Y. Wan, M. L. Tan, C. Song, and Y. Song. 2016. Effect of planting density on lodging-related morphology, lodging rate, and yield of tartary buckwheat (Fagopyrum tataricum). Plant Prod. Sci. 19(4) : 479-488. https://doi.org/10.1080/1343943X.2016.1188320
  26. Xiao, Y., J. Liu, H. Li, X. Cao, X. Xia, and Z. He. 2015. Lodging resistance and yield potential of winter wheat: effect of planting density and genotype. Front. Agric. Sci. Eng. 2(2) : 168-178. https://doi.org/10.15302/J-FASE-2015061
  27. Zhang F. Z., Z. Jin, M. A. Guo-hui, W. Shang, H. Liu, X. Mei-lan, and Y. Liu. 2010. Relationship between lodging resistance and chemical contents in culms and sheaths of Japonica rice during grain filling. Rice Sci. 17 : 311-318. https://doi.org/10.1016/S1672-6308(09)60032-9