DOI QR코드

DOI QR Code

Differences in Seed Vigor, Early Growth, and Secondary Compounds in Hulled and Dehulled Barley, Malting Barley, and Naked Oat Collected from Various Areas

맥종별 주산지와 재배한계지 수집종자의 활력, 초기생장 및 이차화합물 차이

  • Park, Hyung Hwa (Department of Oriental Medicine Resources, Sunchon National Univ.) ;
  • Kuk, Yong In (Dep. Of Oriental Medicine Resources, Sunchon National Univ.)
  • Received : 2021.05.12
  • Accepted : 2021.05.18
  • Published : 2021.06.01

Abstract

The purposes of this study were to determine how changes in temperature affect germination rates and growth of hulled and dehulled barley, malting barley, and naked oat plants, and to measure chlorophyll content, photosynthetic efficiency, and secondary compounds (total phenol, total flavonoid, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity) in plants grown at 13℃ or 25℃). Various types of barley seeds were collected from areas with ideal conditions for barley cultivation, hereinafter referred to as IA, and also from areas where barley cultivation is more difficult due to lower temperatures, hereinafter referred to as LTA. Seeds were tested for seed vigor. While there were significant differences in the electrical conductivity values between seeds collected from certain specific areas, no significant differences were evident between IA and LTA seeds, regardless of the type of barley seed. When plants were grown at 25℃, there were no significant differences in germination rates, plant height, root length and shoot fresh weight between plants originating from IA and LTA. However, there were differences in the measured parameters of some specific seeds. Similarly, under the low temperature condition of 13℃, no differences in the emergence rate, plant height, and shoot fresh weight were evident between plants originating from IA or LTA, regardless of the type of barley. However, there were differences between some specific seeds. One parameter that did vary significantly was the emergence date. Hulled barley and malting barley emerged 5 days after sowing, whereas naked oats emerged 7 days after sowing. There were no differences in the chlorophyll content and photosynthetic efficacy, regardless of the type of barley. There were no significant differences in total phenol, total flavonoid content, and DPPH radical scavenging activity between plants originating from IA and LTA, regardless of the type of barley. However, there were differences between some specific seeds. In particular, for malting barley the total flavonoid content differed in the order of Gangjin > Changwon > Haenam = Jeonju > Naju. The results indicate that crop growth, yield and content of secondary compounds in various types of barley may be affected by climate change.

본 연구의 목적은 다양한 맥종별 주산지 및 재배한계지에서 수집한 종자에 대한 종자활력과 이들 수집종에 대해 다른 온도조건(25, 13℃)하에서 발아율 및 생장과 저온 조건(13℃)하에서 엽록소 함량, 광합성 효율, 이차화합물(총 페놀, 총 플라보노이드, DPPH 라디컬 소거능력) 차이를 알아보는데 있다. 맥종에 상관없이 주산지와 재배한계지간에 전기전도도 값에는 유의적인 차이가 없었으나 일부 수집종자간에는 전기전도도 값에 차이를 보여 종자활력에 차이가 있음을 알 수 있었다. 25℃의 조건하에서 맥종별로 주산지와 재배한계지 수집종간에 발아율, 초장, 근장 및 지상부 생체중은 유의적인 차이가 없었으나 일부 수집종간에 차이를 보였다. 저온조건하에서도 맥종에 상관없이 주산지와 재배한계지간에 출현율, 초장 및 지상부 생체중에는 차이가 없었으나 일부 수집종간에 차이를 보였다. 그러나 겉보리 수집종은 파종 후 5일째에 출현하였고, 맥주보리와 쌀귀리는 파종 후 7일에 출현하여 맥종별 차이를 보였다. 맥종에 상관없이 수집종간에 엽록소와 광합성의 효율에는 차이가 없었다. 또한 맥종에 상관없이 주산지와 재배한계지간에 총 페놀, 총 플라보노이드 함량 및 DPPH 라디컬 소거능력이는 유의적인 차이가 없었으나 일부 수집종간에 차이를 보였다. 특히 맥주보리 경우 총 플라보노이드 함량은 강진>창원>해남=전주>나주 순으로 차이를 보였다. 따라서 기후 변화에 따른 겉보리, 쌀보리, 맥주보리 및 쌀귀리 등은 동일품종이라도 재배지역에 따라 종자활력 뿐만 아니라 생장 및 이차화합물의 함량의 차이가 있을 것으로 사료된다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 공동연구사업(ATIS 과제번호 : PJ01481202)의 지원으로 수행된 결과입니다. 연구과제의 실험 진행을 도와 주신 김희권, 정병준, 이옥기, 박민희 연구원 분들께 감사드립니다.

References

  1. Abdul-Baki, A. A. and J. D. Anderson. 1970. Viability and leaching of sugars from germinating barley. Crop Science 10 : 31-35. https://doi.org/10.2135/cropsci1970.0011183X001000010012x
  2. Ahn, S. H., D. W. Kim, H. S. Lee, J. H. Jeong, H. Y. Jeong, W. H. Hwang, J. S. Baek, K. J. Choi, I. B. Choi, H. K. Park, J. T. Youn, and G. J. Kim. 2017. Changes in physicochemical properties in wheat grains as influenced by average temperature rise during ripening stage. Journal of Korean Society of International Agriculture 29(1) : 50-55. https://doi.org/10.12719/KSIA.2017.29.1.50
  3. Cheynier, V., G. Comte, K. Davies, V. Lattanzio, and S. Martens. 2013. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry 72 : 1-20. https://doi.org/10.1016/j.plaphy.2013.05.009
  4. Chloupek, O., P. Hrstkova, and D. Jurecka. 2008. Tolerance of barley seed germination to cold- and drought-stress expressed as seed vigor. Plant Breeding 122 : 199-203. https://doi.org/10.1046/j.1439-0523.2003.00800.x
  5. Dey, G. and R. K. Mukherjee. 1988. Deterioration of maize and mustard seeds: Changes in phospholipids and tocopherol content in relation to membrane leakiness and lipid peroxidation. Agrochimica 32 : 430-439.
  6. Gelmond, H., I. Luria, L. W. Woodstock, and M. Perl. 1979. The effect of accelerated aging of sorghum seeds on seedling vigour. Journal of Experimental Botany 29 : 489-495. https://doi.org/10.1093/jxb/29.2.489
  7. Ghosh, S., B. Nandi, and N. Fries. 1981. Deterioration of stored wheat caused by fungal infections under different conditions of temperature and relative humidity. Journal of Plant Disease and Protection 88(1) : 9-17.
  8. Hall, R. D. and L. E. Wiesner. 1990. Relationship between seed vigour tests and field performance of 'Regar' meadow bromegrass. Crop Science 30(5) : 967-970. https://doi.org/10.2135/cropsci1990.0011183X003000050001x
  9. Hampton, J. G. and D. M. Tekrony. 1995. Handbook of vigour test methods. 3rd Edition, ISTA, Zurich. p.117.
  10. Hill, H. J., A. G. Taylor, and X. L. Huang. 1988. Seed viability deterioations in cabbage utilizing sinapine leakage and electrical conductivity measurements. Journal of Experimental Botany 39(207) : 1439-1447. https://doi.org/10.1093/jxb/39.10.1439
  11. ISTA (International Seed Testing Association). 2008. International rules for seed testing. Seed Science and Technology 13 : 356-513.
  12. Jang, S. J., H. H. Park, and Y. I. Kuk. 2020. Growth promotion, nutrition levels, and antioxidant activity in Peucedanum japonicum Thunb. under various plant extracts. Agronomy 10 : 1-13. https://doi.org/10.3390/agronomy10010001
  13. Jang, S. J., H. H. Park, and Y. I. Kuk. 2021. Application of various extracts enhances the growth and yield of cucumber (Cucumis sativus L.) without compromising the biochemical content. Agronomy 11, 505. https://doi.org/10.3390/agronomy11030505
  14. Kim, D. K., D. M. Son, S. U. Chon, K. D. Lee, K. H. Kim, and Y. S. Rim. 2009. Phenolic compounds content and DPPH, ADH, ALDH activities of mungbean sprout based on growth temperature. Korean Journal of Crop Science 54 : 1-6.
  15. Latifi, N., A. Soltani, and D. Spanner. 2004. Effect of temperature on germination and components in Canola (Brassica napus L.) cultivars. Iranian Journal of Agriculture Science 35(2) : 313-321.
  16. Lee, K. Y. and C. W. Oh. 2020. Research on Korea's gender mainstreaming strategies for climate technology cooperation: Analysis of gender mainstreaming efforts under the UNFCCC. Journal of Climate Change Research 11 : 455-479. https://doi.org/10.15531/KSCCR.2020.11.5.455
  17. Lee, Y. T. 2001. Dietary fiber composition and viscosity of extracts from domestic barley, wheat, oat, and rye. The Korean Journal of Food & Nutrition 14 : 233-238.
  18. Lopez-Castaneda, C., R. A. Richards, D. G. Farquhar, and R. E. Williamson. 1996. Seed and seeding characteristics contributing to variation in early vigour among temperate cereals. Crop Science 36 : 1257-1266. https://doi.org/10.2135/cropsci1996.0011183X003600050031x
  19. Maiti, R. K., J. De, and M. Carrillo Gutierrez. 1989. Effect of planting depth on seedling emergence and vigour in sorghum (Sorghum bicolor [L.] Moench). Seed Science and Technology 17 : 83-90.
  20. Perry, D. A. 1972. A vigour test for seeds of barley, based on measurement of plumule growth. Seed Science and Technology 5 : 709-719.
  21. Pesis, E. and J. N. Timothy. 1983. Viability, vigour, and electrolytic leakage of Muskmelon seeds subjected to accelerated aging. Hort Science 18 : 242-244.
  22. SAS (Statistical Analysis System). 2000. SAS/STAT Users Guide, Version 7. Statistical Analysis System Institute, Cary, NC, USA.
  23. Shim, K. M., J. T. Lee, Y. S. Lee, and G. Y. Kim. 2004. Reclassification of winter barley cultivation zones in Korea based on recent evidences in climate change. Korean Journal of Agricultural and Forest Meteorology 6 : 218-234.
  24. TeKrony, D. M. and D. B. Egli. 1991. Relationship of seed vigor to crop yield: a review. Crop Science 31: 816-822. https://doi.org/10.2135/cropsci1991.0011183X003100030054x
  25. Wann, E. V. 1986. Leaching of metabolites during imbibition of sweet corn seed of different endosperm genotypes. Crop Science 26 : 731-733. https://doi.org/10.2135/cropsci1986.0011183X002600040020x
  26. Waters, L. and B. L. Blanchette. 1983. Prediction of sweet corn field emergence by conductivity and cold test. Journal of the American Society for Horticutural Science 108 : 778-781. https://doi.org/10.21273/JASHS.108.5.778