THE EXTENDIBILITY OF DIOPHANTINE PAIRS WITH FIBONACCI NUMBERS AND SOME CONDITIONS

Jinseo Park

Abstract

A set $\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}$ of positive integers is called a Diophantine m-tuple if $a_{i} a_{j}+1$ is a perfect square for all $1 \leq i<$ $j \leq m$. Let F_{n} be the nth Fibonacci number which is defined by $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$. In this paper, we find the extendibility of Diophantine pairs $\left\{F_{2 k}, b\right\}$ with some conditions.

1. Introduction

A Diophantine m-tuple is a set which consists of m distinct positive integers satisfy the property that the product of any two of them is one less than a perfect square. If the set which consists of rational numbers satisfies the same property then we called rational Diophantine m-tuple. Diophantus found the first rational Diophantine quadruple $\{1 / 16,33 / 16,17 / 4,105 / 16\}$. However, the first set of four positive integers with the property $\{1,3,8,120\}$ was found by Fermat. Many famous mathematicians made lots of results related to the problems of Diophantine m-tuple, but still there are many open problems. Especially, the most famous problem is the extendibility of Diophantine m-tuple.

For any Diophantine triple $\{a, b, c\}$ with $a<b<c$, the set $\left\{a, b, c, d_{ \pm}\right\}$ is a Diophantine quadruple, where

$$
d_{ \pm}=a+b+c+2 a b c \pm 2 r s t
$$

and r, s, t are the positive integers satisfying

$$
a b+1=r^{2}, \quad a c+1=s^{2}, \quad b c+1=t^{2}
$$

Received May 08, 2021; Accepted July 20, 2021.
2010 Mathematics Subject Classification: Primary 11B39, 11D09, 11D45; Secondary 11B37, 11J68, 11J86.

Key words and phrases: Diophantine m-tuple, Fibonacci numbers, Pell equation.
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1G1A1006396).

A folklore conjecture is that there does not exist a Diophantine quintuple. Recently, the conjecture has been proved by B. He, A. Togbé and V. Ziegler[?]. The stronger version of this conjecture states that if $\{a, b, c, d\}$ is a Diophantine quadruple and $d>\max \{a, b, c\}$ then $d=d_{+}$. These Diophantine quadruples are called regular.

We can find the importance of the extendiblity of Diophantine m tuples in relation to the elliptic curves. We have to solve the equations

$$
a x+1=\square, b x+1=\square, c x+1=\square
$$

to extend the Diophantine triple $\{a, b, c\}$ to the Diophantine quadruple. Then we have the equation

$$
E: y^{2}=(a x+1)(b x+1)(c x+1)
$$

which is the elliptic curve by the product of three equations. We always have the integer points
$(0, \pm 1),\left(d_{+}, \pm(a t+r s)(b s+r t)(c r+s t)\right),\left(d_{-}, \pm((a t-r s)(b s-r t)(c r-s t))\right)$,
and also $(-1,0)$ if $1 \in\{a, b, c\}$ on E. For example, A. Dujella[?] proved that the elliptic curve

$$
E_{k}: y^{2}=((k-1) x+1)((k+1) x+1)(4 k x+1)
$$

has four integer points

$$
(0, \pm 1),\left(16 k^{3}-4 k, \pm\left(128 k^{6}-112 k^{4}-20 k^{2}-1\right)\right)
$$

under assumption that $\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)=1$. Similar results like [?] and [?] were proved for the equation

$$
y^{2}=\left(F_{2 k} x+1\right)\left(F_{2 k+2} x+1\right)\left(F_{2 k+4}+1\right)
$$

and

$$
y^{2}=\left(F_{2 k+1} x+1\right)\left(F_{2 k+3} x+1\right)\left(F_{2 k+5}+1\right),
$$

respectively, where F_{n} is the n-th Fibonacci number, which is defined by $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$.

In 1977, Hoggatt and Bergum conjectured that if $\left\{F_{2 k}, F_{2 k+2}, F_{2 k+4}, d\right\}$ is a Diophantine quadruple then d is a unique[?]. In 1999, A. Dujella proved this conjecture[?]. Furthermore, A. Filipin, Y. Fujita and A. Togbé proved that Diophantine pairs $\left\{F_{2 k}, F_{2 k+2}\right\}$ can be extended to Diophantine quintuples[?]. Recently, the extendibility of Diophantine pairs $\left\{F_{2 k}, F_{2 k+4}\right\}$ was proved by the author[?]. The Diophantine pairs $\left\{F_{2 k}, F_{2 k+4}\right\}$ has the ideal lower bound which is used in the Theorem of Baker and Wüstholz, since $F_{2 k}+F_{2 k+4}=3 F_{2 k+2}$, that is $a+b=3 r$.

In this paper, we prove the extendibility of Diophantine pairs $\left\{F_{2 k}, b\right\}$, where r is a divisor of $a+b$ and $b \leq 8 a$. More precisely, the Diophantine triple $\left\{F_{2 k}, b, c_{1}^{+}\right\}$can be extended only to regular.

2. Preliminaries

2.1. The bounds of each elements of Diophantine triple

We can find the lower bounds of second element of the Diophantine triple $\{a, b, c\}$ with $a<b$ using the following lemma.

Lemma 2.1. [?, Lemma 1.3] Suppose that $\{a, b, c, d\}$ is a Diophantine quadruple with $a<b<c<d_{+}<d$.

1. If $b<2 a$, then $b>2.1 \cdot 10^{4}$.
2. If $2 a \leq b \leq 8 a$, then $b>1.3 \cdot 10^{5}$.
3. If $b>8 a$, then $b>2 \cdot 10^{3}$.

Let $\{a, b, c\}$ be a Diophantine triple, and r, s, t be the positive integers satisfying $a b+1=r^{2}, a c+1=s^{2}, b c+1=t^{2}$. Then we have

$$
a t^{2}-b s^{2}=a-b
$$

We easily find the form of solutions of the equation above is

$$
(t \sqrt{a}+s \sqrt{b})=\left(t_{0} \sqrt{a}+s_{0} \sqrt{b}\right)(r+\sqrt{b c})^{\nu} .
$$

If $\left(t_{0}, s_{0}\right)$ belongs to the same class as either of the solutions $(\pm 1,1)$ then s can be expressed as $s=s_{\nu}^{\tau}$, where $\tau \in\{ \pm 1\}$ and

$$
s_{0}=s_{0}^{\tau}=1, s_{1}^{\tau}=r+\tau a, s_{\nu+2}^{\tau}=2 r s_{\nu+1}^{\tau}-s_{\nu}^{\tau}
$$

Define $c_{\nu}^{\tau}=\left(\left(s_{\nu}^{\tau}\right)^{2}-1\right) / a$. Then, we obtain

$$
\begin{aligned}
& c=c_{\nu}^{\tau}=\frac{1}{4 a b}\left[(a+b \pm 2 \sqrt{a b})(2 a b+1+2 r \sqrt{a b})^{\nu}\right. \\
& \left.+(a+b \mp 2 \sqrt{a b})(2 a b+1-2 r \sqrt{a b})^{\nu}-2(a+b)\right] .
\end{aligned}
$$

First, we have the form of third element c in the Diophantine triple $\{a, b, c\}$ by the following theorem.

Lemma 2.2. [?, Lemma 4.1] Let $\{a, b, c\}$ be a Diophantine triple. Assume that $a<b \leq 8 a$. Then $c=c_{\nu}^{\tau}$ for some ν and τ.

Next, the following theorem gives us the bound of third element c in the Diophantine triple $\{a, b, c\}$.

Theorem 2.3. [?, Theorem 1.2] Let $\{a, b, c\}$ be a Diophantine triple with $a<b$. Suppose that $\{a, b, c, d\}$ is a Diophantine quadruple with $d>d_{+}$and that $\left\{a, b, c^{\prime}, c\right\}$ is not a Diophantine quadruple for any c^{\prime} with $0<c^{\prime}<d_{-}$, where d_{+}and d_{-}are defined by

$$
d_{ \pm}=a+b+c+2 a b c \pm 2 r s t
$$

respectively.

1. If $b<2 a$, then $c<b^{6}$.
2. If $2 a \leq b \leq 8 a$, then $c<9.5 b^{4}$.
3. If $b>8 a$, then $c<b^{5}$.

If $c=c_{\nu}^{\tau}$ then we can find the upper bound of c more specific by the following theorem.

Theorem 2.4. [?, Theorem 1.4] Suppose that $\left\{a, b, c_{\nu}^{\tau}, d\right\}$ is a Diophantine quadruple with $d>c_{\nu+1}^{\tau}$ and that $\left\{a, b, c^{\prime}, c_{\nu}^{\tau}\right\}$ is not a Diophantine quadruple for any c^{\prime} with $0<c^{\prime}<c_{\nu-1}^{\tau}$.

1. If $b<2 a$, then $c \leq c_{3}^{+}$.
2. If $2 a \leq b \leq 8 a$, then $c \leq c_{2}^{+}$.

2.2. The Properties of solutions of Pell equation

We have to solve the system

$$
a d+1=x^{2}, \quad b d+1=y^{2}, \quad c d+1=z^{2}
$$

to extend the Diophantine triple $\{a, b, c\}$ to the Diophantine quadruple $\{a, b, c, d\}$. One can eliminate d to obtain the following system of Pell equations

$$
\begin{gather*}
a y^{2}-b x^{2}=a-b, \tag{2.1}\\
a z^{2}-c x^{2}=a-c \tag{2.2}\\
b z^{2}-c y^{2}=b-c \tag{2.3}
\end{gather*}
$$

Lemma 2.5. [?, Lemma 1] There exist positive integers i_{0}, j_{0} and integers $z_{0}^{(i)}, x_{0}^{(i)}, z_{1}^{(j)}, y_{1}^{(j)}, i=1, \ldots, i_{0}, j=1, \ldots, j_{0}$, with the following properties:

1. $\left(z_{0}^{(i)}, x_{0}^{(i)}\right)$ and $\left(z_{1}^{(j)}, y_{1}^{(j)}\right)$ are solutions of (??) and (??), respectively.
2. $z_{0}^{(i)}, x_{0}^{(i)}, z_{1}^{(j)}, y_{1}^{(j)}$ satisfy the following inequalities

$$
0<x_{0}^{(i)} \leq \sqrt{\frac{a(c-a)}{2(s-1)}}<\sqrt{\frac{s+1}{2}}<\sqrt[4]{a c}
$$

$$
\begin{gathered}
0 \leq\left|z_{0}^{(i)}\right| \leq \sqrt{\frac{(s-1)(c-a)}{2 a}}<\sqrt{\frac{c \sqrt{c}}{2 \sqrt{a}}}<\frac{c}{2} \\
0<y_{1}^{(j)} \leq \sqrt{\frac{b(c-b)}{2(t-1)}}<\sqrt{\frac{t+1}{2}}<\sqrt[4]{b c} \\
0 \leq\left|z_{1}^{(j)}\right| \leq \sqrt{\frac{(t-1)(c-b)}{2 b}}<\sqrt{\frac{c \sqrt{c}}{2 \sqrt{b}}}<\frac{c}{3}
\end{gathered}
$$

3. If (z, x) and (z, y) are positive integers of (??) and (??), respectively then there exist $i \in\left\{1, \ldots, i_{0}\right\}, j \in\left\{1, \ldots, j_{0}\right\}$ and integers $m, n \geq 0$ such that

$$
\begin{align*}
z \sqrt{a}+x \sqrt{c} & =\left(z_{0}^{(i)} \sqrt{a}+x_{0}^{(i)} \sqrt{c}\right)(s+\sqrt{a c})^{m} \tag{2.4}\\
z \sqrt{b}+y \sqrt{c} & =\left(z_{1}^{(j)} \sqrt{b}+y_{1}^{(j)} \sqrt{c}\right)(t+\sqrt{b c})^{n} \tag{2.5}
\end{align*}
$$

From now on, we omit the superscripts (i) and (j). By (??), we may write $z=v_{m}$, where

$$
\begin{equation*}
v_{0}=z_{0}, v_{1}=s z_{0}+c x_{0}, v_{m+2}=2 s v_{m+1}-v_{m} \tag{2.6}
\end{equation*}
$$

and by (??), we may write $z=w_{n}$, where

$$
\begin{equation*}
w_{0}=z_{1}, w_{1}=t z_{1}+c y_{1}, w_{n+2}=2 t w_{n+1}-w_{n} \tag{2.7}
\end{equation*}
$$

Lemma 2.6. [?, Lemma 3] If $v_{m}=w_{n}$ then $n-1 \leq m \leq 2 n+1$.

2.3. Congruence relation between solutions of Pell equations

In this section, we give the congruence relations between v_{m} and w_{n}, and properties of initial terms of (??) and (??).

Lemma 2.7. [?, Lemma 4] We have the following properties of v_{m} and w_{n}.

$$
\begin{gathered}
v_{2 m} \equiv z_{0}+2 c\left[a z_{0} m^{2}+s x_{0} m\right] \quad\left(\bmod 8 c^{2}\right) \\
v_{2 m+1} \equiv s z_{0}+c\left[2 a s z_{0} m(m+1)+x_{0}(2 m+1)\right] \quad\left(\bmod 4 c^{2}\right) \\
w_{2 n} \equiv z_{1}+2 c\left[b z_{1} n^{2}+t y_{1} n\right] \quad\left(\bmod 8 c^{2}\right) \\
w_{2 n+1} \equiv t z_{1}+c\left[2 b t z_{1} n(n+1)+y_{1}(2 n+1)\right] \quad\left(\bmod 4 c^{2}\right)
\end{gathered}
$$

We have a question such that when does $v_{m}=w_{n}$ have a solution and if there exists a solution of $v_{m}=w_{n}$ then which values are possible for the solution. The following lemma gives us the answer.

Lemma 2.8. [?, Lemma 8] We have the following results.

1. If the equation $v_{2 m}=w_{2 n}$ has a solution then $z_{0}=z_{1}$. Furthermore, $\left|z_{0}\right|=1$ or $\left|z_{0}\right|=c r-$ st or $\left|z_{0}\right|<\min \left\{0.869 a^{-5 / 14} c^{9 / 14}, 0.972 b^{-0.3} c^{0.7}\right\}$.
2. If the equation $v_{2 m+1}=w_{2 n}$ has a solution then $\left|z_{0}\right|=t,\left|z_{1}\right|=$ cr - st and $z_{0} z_{1}<0$.
3. If the equation $v_{2 m}=w_{2 n+1}$ has a solution then $\left|z_{0}\right|=c r-$ $s t,\left|z_{1}\right|=s$ and $z_{0} z_{1}<0$.
4. If the equation $v_{2 m+1}=w_{2 n+1}$ has a solution then $\left|z_{0}\right|=t,\left|z_{1}\right|=s$ and $z_{0} z_{1}>0$.
Furthermore, the solution of $v_{m}=w_{n}$ is more specific when $c=c_{\nu}^{\tau} \leq$ c_{3}^{+}by the following lemma.

Lemma 2.9. [?, Lemma 3.1] Assume that $a<b \leq 8 a$.

1. Assume that $b<3 a$. In the case of $c=c_{1}^{-}$, we have $v_{2 m+1} \neq w_{2 n}$, $v_{2 m} \neq w_{2 n+1}$ and $v_{2 m+1} \neq w_{2 n+1}$. Moreover, if $v_{2 m}=w_{2 n}$ then $z_{0}=z_{1}=1$.
2. In the case of $c=c_{1}^{+}$, we have $v_{2 m+1} \neq w_{2 n}, v_{2 m} \neq w_{2 n+1}$ and $v_{2 m+1} \neq w_{2 n+1}$. Moreover, if $v_{2 m}=w_{2 n}$ then $z_{0}=z_{1}$ and $\left|z_{0}\right|=1$.
3. In the case of $c=c_{2}^{-}$, we have $v_{2 m+1} \neq w_{2 n}$ and $v_{2 m+1} \neq w_{2 n+1}$. Moreover, we have the following:
(a) If $v_{2 m}=w_{2 n}$ then $z_{0}=z_{1}$ and $\left|z_{0}\right|=1$ or $c r-s t$.
(b) If $v_{2 m}=w_{2 n+1}$ then $\left|z_{0}\right|=c r-s t$ and $\left|z_{1}\right|=s$ with $z_{0} z_{1}<0$.

Furthermore, (b) occurs if and only if (a) with $\left|z_{0}\right|=c r-$ st occurs.
4. In the case of $c \in\left\{c_{2}^{+}, c_{3}^{-}, c_{3}^{+}\right\}$, we have $v_{2 m+1} \neq w_{2 n}$ and $v_{2 m} \neq$ $w_{2 n+1}$. Moreover, we get the following:
(a) If $v_{2 m}=w_{2 n}$ then $z_{0}=z_{1}$ and $\left|z_{0}\right|=1$.
(b) If $v_{2 m+1}=w_{2 n+1}$ then $\left|z_{0}\right|=t$ and $\left|z_{1}\right|=s$ with $z_{0} z_{1}>0$.

2.4. Some theorems for applying the reduction method

From (??), (??) and sum of their conjugate, respectively, we get
$v_{m}=\frac{1}{2 \sqrt{a}}\left[\left(z_{0} \sqrt{a}+x_{0} \sqrt{c}\right)(s+\sqrt{a c})^{m}+\left(z_{0} \sqrt{a}-x_{0} \sqrt{c}\right)(s-\sqrt{a c})^{m}\right]$,
$w_{n}=\frac{1}{2 \sqrt{b}}\left[\left(z_{1} \sqrt{b}+y_{1} \sqrt{c}\right)(t+\sqrt{b c})^{n}+\left(z_{1} \sqrt{b}-y_{1} \sqrt{c}\right)(t-\sqrt{b c})^{n}\right]$.
Hence, we transform the equation $v_{m}=w_{n}$ into the following inequality.
Lemma 2.10. [?, Lemma 5] Assume that $c>4 b$. If $v_{m}=w_{n}$ and $m, n \neq 0$ then
$0<m \log (s+\sqrt{a c})-n \log (t+\sqrt{b c})+\log \frac{\sqrt{b}\left(x_{0} \sqrt{c}+z_{0} \sqrt{a}\right)}{\sqrt{a}\left(y_{1} \sqrt{c}+z_{1} \sqrt{b}\right)}<\frac{8}{3} a c(s+\sqrt{a c})^{-2 m}$.

We use the following theorem and lemma to obtain the upper bound for m.

Theorem 2.11. [?, p.20] For a linear form

$$
\Lambda=\beta_{1} \log \alpha_{1}+\cdots+\beta_{l} \log \alpha_{l} \neq 0
$$

in logarithms of l algebraic numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}$ with rational coefficients $\beta_{1}, \beta_{2}, \ldots, \beta_{l}$, we have

$$
\log |\Lambda| \geq-18(l+1)!l^{l+1}(32 d)^{l+2} h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{l}\right) \log (2 l d) \log \beta
$$

where $\beta:=\max \left\{\left|\beta_{1}\right|, \ldots,\left|\beta_{l}\right|\right\}, d:=\left[\mathbb{Q}\left(\alpha_{1}, \cdots, \alpha_{l}\right): \mathbb{Q}\right]$ and

$$
h^{\prime}(\alpha)=\frac{1}{d} \max \{h(\alpha),|\log \alpha|, 1\}
$$

with the standard logarithmic Weil height $h(\alpha)$ of α.
Lemma 2.12. [?, Lemma 5] Suppose that M is a positive integer. Let p / q be the convergent of the continued fraction expansion of κ such that $q>6 M$ and let $\epsilon=\|\mu q\|-M \cdot\|\kappa q\|$, where $\|\cdot\|$ denotes the distance from the nearest integer.

1. If $\epsilon>0$ then there is no solution of the inequality

$$
\begin{equation*}
0<m \kappa-n+\mu<A B^{-m} \tag{2.8}
\end{equation*}
$$

in integers m and n with

$$
\frac{\log (A q / \epsilon)}{\log B} \leq m \leq M
$$

2. Let $r=\left\lfloor\mu q+\frac{1}{2}\right\rfloor$. If $p-q+r=0$ then there is no solution of inequality (??) in integers m and n with

$$
\max \left\{\frac{\log (3 A q)}{\log B}, 1\right\}<m \leq M
$$

3. The extendibility of $\left\{F_{2 k}, b\right\}$ with some conditions

Let a denote a $F_{2 k}$, and we use this notation in the rest of the paper. In this section, we consider the extendibility of Diophantine triple $\left\{a, b, c_{1}^{+}\right\}$, where $b \leq 8 a$ and r is a divisor of $a+b$. Let $a+b=\rho \cdot r$, where ρ is an integer. Then we get a bound of ρ such that $1 \leq \rho \leq 8$, since $a<r$ and $b<8 r$.

- If $\rho=1$ then it is possible only for $a=1$. However, it means that $b=0$, which is a contradiction.
- If $\rho=2$ then we get $b=a+2$, and this case was proved by Fujita [?].
- If $\rho=3$ then it is the case of $b=F_{2 k+4}$ which was proved in [?].

Hence, we may assume that $\rho \geq 4$.

3.1. Bounds for m and k

Lemma 3.1. Suppose that $m, n \geq 2$. Then

$$
m \geq \frac{\sqrt{2 a+1}-1}{2}
$$

Proof. For the case of c_{1}^{+}, we have

$$
s_{1}^{+}=a+r \equiv a \quad(\bmod r) \quad \text { and } \quad t_{1}^{+}=b+r \equiv b \quad(\bmod r) .
$$

Using the Lemma ??, we have

$$
\pm a m^{2}+a m \equiv \pm b n^{2}+b n \quad(\bmod r)
$$

Since r is a divisor of $a+b$ and $\operatorname{gcd}(a, r)=1$, we have

$$
m^{2}+n^{2} \pm m \pm n \equiv 0 \quad(\bmod r)
$$

However, $2 m^{2}+2 m \geq m^{2}+n^{2} \pm m \pm n>0$. Hence, we have

$$
2\left(m^{2}+m\right) \geq r>a
$$

We have the following inequality for linear form in logarithms.
Lemma 3.2. If $v_{2 m}=w_{2 n}$ with c_{1}^{+}and $m, n \neq 0$ then

$$
\begin{aligned}
0 & <2 m \log (s+\sqrt{a c})-2 n \log (t+\sqrt{b c})+\log \frac{\sqrt{b}(\sqrt{c} \pm \sqrt{a})}{\sqrt{a}(\sqrt{c} \pm \sqrt{b})} \\
& <3.08(s+\sqrt{a c})^{-4 m}
\end{aligned}
$$

Proof. Put

$$
P=\frac{1}{\sqrt{a}}\left(x_{0} \sqrt{c}+z_{0} \sqrt{a}\right)(s+\sqrt{a c})^{m}, Q=\frac{1}{\sqrt{b}}\left(y_{1} \sqrt{c}+z_{1} \sqrt{b}\right)(t+\sqrt{b c})^{n}
$$

Then
$P^{-1}=\frac{\sqrt{a}\left(x_{0} \sqrt{c}-z_{0} \sqrt{a}\right)}{c-a}(s-\sqrt{a c})^{m}, Q^{-1}=\frac{\sqrt{b}\left(y_{1} \sqrt{c}-z_{1} \sqrt{b}\right)}{c-b}(t-\sqrt{b c})^{n}$.
Therefore, the relation $v_{m}=w_{n}$ becomes

$$
P-\frac{c-a}{a} P^{-1}=Q-\frac{c-b}{b} Q^{-1}
$$

Since $P>0, Q>0$ and

$$
P-Q>\frac{c-a}{a}(Q-P) P^{-1} Q^{-1}
$$

it follows that $P>Q$. Furthermore, we have

$$
\frac{P-Q}{P}<\frac{c-a}{a} P^{-2}<\frac{1}{a(c-a)} \leq \frac{1}{39}
$$

Hence,

$$
\begin{aligned}
0 & <\log \frac{P}{Q}=-\log \left(1-\frac{P-Q}{P}\right)<\frac{40}{39}\left(\frac{c-a}{a}\right) P^{-2} \\
& <\frac{40}{39} \frac{c-a}{(\sqrt{c}-\sqrt{a})^{2}}(s+\sqrt{a c})^{-2 m}
\end{aligned}
$$

Since $c=c_{1}^{+}=a+b+2 r>4 a$, we have $\frac{\sqrt{c}+\sqrt{a}}{\sqrt{c}-\sqrt{a}}<3$. Hence, we obtain the result.

According to Lemma ??, Lemma ?? and Theorem ??, we have $l=$ $3, d=4, \beta=2 m$,

$$
\alpha_{1}=s+\sqrt{a c}, \quad \alpha_{2}=t+\sqrt{b c}, \quad \alpha_{3}=\frac{(\sqrt{c} \pm \sqrt{a}) \sqrt{b}}{(\sqrt{c} \pm \sqrt{b}) \sqrt{a}}
$$

Let α_{3}^{\prime} and $\alpha_{3}^{\prime \prime}$ be the conjugates of α_{3} whose absolute values are greater than one. Then

$$
\begin{gathered}
h^{\prime}\left(\alpha_{1}\right)=\frac{1}{2} \log \left(\alpha_{1}\right)<\frac{1}{2} \log (2 s), \quad h^{\prime}\left(\alpha_{2}\right)=\frac{1}{2} \log \left(\alpha_{2}\right)<\frac{1}{2} \log (2 t), \\
h^{\prime}\left(\alpha_{3}\right) \leq \frac{1}{4}\left\{\log \left(a^{2}(c-b)^{2}\right)+\log \left(\alpha_{3} \alpha_{3}^{\prime} \alpha_{3}^{\prime \prime}\right)\right\} \\
=\frac{1}{4}\{\log (b \sqrt{a b}(\sqrt{c}+\sqrt{a})(\sqrt{c}+\sqrt{b})(c-a))\}<\log (1.42 c)
\end{gathered}
$$

and
$\log |\Lambda| \geq-18 \cdot 4!3^{4}(32 \cdot 4)^{5} \frac{1}{2} \log (2 s) \frac{1}{2} \log (2 t) \log (1.42 c) \cdot \log (24) \cdot \log (2 m)$.
Since

$$
\log \left(\frac{8}{3} a c(s+\sqrt{a c})^{-4 m}\right)<(-2 m+1) \log (4 a c)
$$

and

$$
\log \left(3.08(s+\sqrt{a c})^{-4 m}\right)<(-2 m+1) \log (4 a c)
$$

$c<15 a$ imply the following inequality

$$
\begin{equation*}
\frac{2 m-1}{\log (2 m)}<9.556 \cdot 10^{14} \log (30 a) \log (21.3 a) \tag{3.1}
\end{equation*}
$$

By the lower bound of m and (??), we get $a<9.35 \cdot 10^{40}$ and $c<$ $1.41 \cdot 10^{42}$. Since $(1.618)^{2 k}<\alpha^{2 k}<\bar{\alpha}^{2 k}+\sqrt{5} \cdot\left(9.35 \cdot 10^{40}\right)$, we get $k \leq 98$. Also, from (??) and the upper bound of a, we obtain $m<2.17 \cdot 10^{20}$.

3.2. The reduction method

We can obtain an upper bound of m using the Lemma ?? with the inequalities

$$
0<m_{1} \kappa-n_{1}+\mu_{1}<A_{3} B^{m_{1}},
$$

where $m_{1}:=2 m, n_{1}:=2 n$ and

$$
\kappa=\frac{\log \alpha_{1}}{\log \alpha_{2}}, \mu_{1}=\frac{\log \alpha_{3}}{\log \alpha_{2}}, A_{3}=\frac{3.08}{\log \alpha_{2}}, \quad B=\alpha_{1}^{2} .
$$

We apply the Lemma ?? to the logarithmic inequalities with $M:=$ $2 m \leq 4.34 \cdot 10^{20}$. We have to examine $10 \cdot 98=980$ cases. The program was developed in PARI/GP running with 70 digits. For the computations, if the first convergent such that $q>6 M_{i}$ with $i=1,2$ does not satisfy the condition $\epsilon>0$ then we use the next convergent until we find the one that satisfies the conditions. Then we have the following Table ?? as results.

Table 1. Results from PARI/GP running

Case of ρ	Initial values	Use the next convergent
4	$z_{0}=z_{1}=1$	0 case
	$z_{0}=z_{1}=-1$	80 cases $(k=19, \ldots, 98)$
5	$z_{0}=z_{1}=1$	0 case
	$z_{0}=z_{1}=-1$	81 cases $(k=18, \ldots, 98)$
6	$z_{0}=z_{1}=1$	0 case
	$z_{0}=z_{1}=-1$	81 cases $(k=18, \ldots, 98)$
7	$z_{0}=z_{1}=1$	0 case
	$z_{0}=z_{1}=-1$	81 cases $(k=18, \ldots, 98)$
8	$z_{0}=z_{1}=1$	0 case
	$z_{0}=z_{1}=-1$	82 cases $(k=17, \ldots, 98)$

However, in all cases except the case of $\rho=4$, we get $m \leq 6$. Hence, we take $M=12$, and run the program again, then we obtain $m \leq 1$. When the case of $\rho=4$, we get $m \leq 7$, so we take $M=14$. Then also we obtain $m \leq 1$. Therefore, we have the following theorem.

Theorem 3.3. Let $a=F_{2 k}, a<b \leq 8 a$ and $\left\{a, b, c_{1}^{+}, d\right\}$ be a Diophantine quadruple with $c_{1}^{+}<d$. If r is a divisor of $a+b$ then $d=c_{2}^{+}$.

References

[1] A. Baker, G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math., 442 (1993), 19-62.
[2] A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc., 127 (1999), 1999-2005
[3] A. Dujella, A parametric family of elliptic curves, Acta Arith. 94, (2000), no. 1, 87-101.
[4] A. Dujella, An absolute bound for the size of Diophantine m-tuple, J. Number theory, 89 (2001), no. 1, 126-150.
[5] A. Dujella, Diophantine m-tuples and elliptic curves, 21st Journées Arithmétiques (Rome, 2001), J. Théor. Nombres Bordeaux 13, (2001), no 1, 111-124.
[6] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math., 566 (2004), 183-214.
[7] A. Dujella, A. Pethö, Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser., (2) 49 (1998), no. 195, 291-306.
[8] A. Filipin, Y. Fujita, A. Togbé, The extendibility of Diophantine pairs I: The general case, Glas. Mat. Ser. III., 49(69) (2014), no. 1, 25-36.
[9] A. Filipin, Y. Fujita, A. Togbé, The extendibility of Diophantine pairs II: Examples, J. Number theory, 145 (2014), 604-631.
[10] Y. Fujita, The extensibility of Diophantine pair $\{k-1, k+1\}$, J. Number Theory, 128 (2008), no. 2, 323-353.
[11] Y. Fujita, The Hoggatt-Bergum conjecture on $D(-1)$-triples $\left\{F_{2 k+1}, F_{2 k+3}, F_{2 k+5}\right\}$ and integer points on the attached elliptic curves, Rocky Mountain J. Math., 39 (2009), no. 6, 1907-1932.
[12] B. He, A. Togbé, V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc., 371 (2019), 6665-6709.
[13] V. E. Hoggatt, G. E. Bergum, A problem of Fermat and the Fibonacci sequence, Fibonacci Quart., 15 (1977), 323-330.
[14] J. Park, J. B. Lee, Some family of Diophantine pairs with Fibonacci numbers, Indian J. Pure Appl. Math., 50, (2019), no. 2, 367-384.

Department of Mathematics Education
Catholic Kwandong University
Gangneung 25601, Republic of Korea
E-mail: jspark@cku.ac.kr

