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ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS

CORRESPONDING TO POLYNOMIAL SZEGŐ

MEASURE WITH AN INFINITE DISCRETE PART

Fatima Zohra Benghia* and Youcef Belabbaci**

Abstract. The asymptotics behavior orthogonal polynomials have
been in the spotlight since the result of G. Szegő in 1921. In this
paper we study the pointwise asymptotics inside the unit disk for
orthogonal polynomials with respect to a polynomial Szegő measure
with an infinite masses points.

1. Introduction

Let T = {z ∈ C : |z| = 1} be the unit circle and let p be a trigono-
metric polynomial, non-negative on T. We say that a measure µ on
T belongs to the polynomial Szegő class ( denoted by µ ∈ (pS) ) if
dµ = µ′acdm+ dµs, where µac is the absolutely continuous part of µ and
dµs is singular and, ∫

T
p(t) logµ′ac(t)dm(t) > −∞.

Wherem is the probability Lebesgue measure on T i.e. dm(t) = dt/(2πit) =
1/(2π)dθ , t = eiθ ∈ T. Denote by Pn the set of polynomials of degree
at most n and ϕn(z) = knz

n + ... ∈ Pn (kn > 0) be the polynomial of
degree n orthonormal with respect to µ i.e.

(1.1)
1

2π

∫ 2π

0
ϕn(z)zkdµ(θ) = k−1n δkn.

k = 0, 1, ..., n, z = eiθ, where δkn is the Kronecker’s symbol.
For the system {ϕn}n∈N, one gets
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(1.2)
1

2π

∫ 2π

0
ϕn(z)ϕm(z)dµ(θ) = δmn, m, n, ..., z = eiθ.

In 2006 Denisov and Kupin in [3] have obtained pointwise asymp-
totics in the open unit disk D for the associated orthonormal polynomi-
als ϕn(z) and proved these asymptotics in L2-sense on the unit circle .
For the polynomial Szego class measure they have introduced the func-
tions :

(1.3) D̃(z) = exp

{
1

2π

∫ 2π

0
K(eiθ, z) logµ′ac(e

iθ)dθ

}
,

(1.4) ϕ̃∗n(z) = exp

{
1

2π

∫ 2π

0
K(eiθ, z) log

∣∣∣ϕ∗n(eiθ)
∣∣∣ dθ} ,

(1.5) ψ̃∗n(z) = exp

{
1

2π

∫ 2π

0
K(eiθ, z) log

∣∣∣ψ∗n(eiθ)
∣∣∣ dθ} ,

where K(eiθ, z) is the modified Schwarz kernel defined by

K(t, z) =
t+ z

t− z
q(t)

q(z)
=
t+ z

t− z
q0(t)

q0(z)
,

with q(t) =
∏N
k=1(t−ςk)2Kk/tN

′
, N ′ =

∑
kKk, t = eiθ and q(t) = Cq0(t).

The constant C equals (
∏
k(−ςk)Kk)−1 , so that |C| = 1 and q(t) =∏k |t− ςk|2Kk = p(t) for t ∈ T . The functions {ϕ̃∗n} are called the

modified reversed orthogonal polynomials with respect to µ.

Theorem 1.1. [3] Let µ ∈ (pS). Then

lim
n→∞

D̃(z)ϕ̃∗n(z) = 1.

for every z ∈ D.

The proof of this theorem is largely inspired by the classical proof of
(Theorem [13]).
In 2011, Khaldi and Guezane-Lakoud in [7] have been generalized this

theorem in the case where the measure vl ∈ (pS) on T ∪ {zk}lk=1 per-
turbed by a finite Blaschke sequence of point masses outside the unit
circle, where the masses Ak > 0 for k = 1, ..., l; and δ(z−zk) is the Dirac
measure supported at the point zk.
We denote by {ψk} the system of orthonormal polynomials associated
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to vl .
{ψk}n∈N satisfy the following orthonormality relations:

ψn(z) = γlnz
n + ...(γln > 0),

(1.6)
1

2π

∫ 2π

0
ψn(z)ψm(z)dµ(θ) +

l∑
k=1

Akψn(zk)ψm(zk) = δmn.

m, n, ..., z = eiθ.

Khaldi and Guezane-Lakoud have invested the ratio for the two or-
thonormal polynomials {ψk} and {ϕk} to give,

Theorem 1.2. [6] Let vl = µ+
∑l

k=1Akδ(z−zk) such that µ ∈ (pS).

Associate with the measure vl the functions D̃(z) and ψ̃∗n(z) given by
(1.3) , (1.5) then we have

lim
n→∞

D̃(z)ψ̃∗n(z) = 1,

for every z ∈ D.

The asymptotic behavior of the polynomials {ψk} has been estab-
lished by Li and Pan [13] in the case where the measure µ is not abso-
lutely continuous.
Consider now the measure v on T∪ {zk}∞k=1, zk are fixed points outside
D

v = µ+
∞∑
k=1

Akδ(z − zk),

where the masses Ak satisfy

(1.7) Ak > 0,
∞∑
k=1

Ak <∞ and
∞∑
k=1

(|zk| − 1) < +∞,

for k = 1, ... and δ(z−zk) is the Dirac measure supported at the point zk.

Note that the system {Φk}n∈N satisfy the following orthonormality
relations:

Φn(z) = γnz
n + ...(γn > 0),

(1.8)
1

2π

∫ 2π

0
Φn(z)Φm(z)dµ(θ) +

∞∑
k=1

AkΦn(zk)Φm(zk) = δmn.

m, n, ..., z = eiθ.
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The purpose of this paper is to study the pointwise asymptotics inside
the unit disk for orthogonal polynomials with respect to a measure from
polynomial Szegő class and perturbed by an infinite masses points out-
side the unit circle. A similar study has been done by Khaldi and R.
Benzine in ([6]) where µ is a positive measure on the unit circle satisfying
the Szegő condition with an infinite discrete part. To get the asymptotic
formula of Φn(z) they have proved two intermediate results.

2. Preliminaries

We say that µ is a Szegő measure (notation: µ ∈ (S)) if its singular
part µs is arbitrary and ∫

T
logµ′acdm > −∞

where µ′ac is the density of the absolutely continuous part of µ and
dm = dm(t) = dθ/(2π), t = eiθ ∈ T is the normalized Lebesgue mea-
sure on T.
Now we define Szegő polynomial class (Sp) as follow: Let p be a trigono-
metric polynomial such that p(t) ≥ 0, t ∈ T . Without loss of generality
we can assume that

p(t) =
k=1∏
N

(t− ξk)2mk

where ξk are points on T and mk > 0 are their multiplicities. We say
that a measure µ belongs to the polynomial Szegő class (denoted by
µ ∈ (pS) ) if ∫ 2π

0
p(eiθ) logµ′ac(e

iθ)dθ > −∞,

We say that µ belongs to the Erdős class (µ ∈ (E)) if µ′ac > 0 a.e. on
T .
The following relations are true (see [11] ).

S ⊂ pS ⊂ E
.

2.1. The space H2(G, p̃)

In what follows, we suppose that the absolutely continuous part of µ
with respect to the Lebesgue measure m satisfies the generalized Szegő
condition:
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Lemma 2.1. Let µ ∈ (pS) and the function D̃ be defined in (3), then

1. D̃(z) ∈ H2(D),

2. D̃(z) 6= 0 for |z| < 1,

3.
∣∣∣D̃(t)

∣∣∣2 = µ′ac(t) a.e. on T,

4. D̃(0) > 0.

Proof. Consider the Poisson integral associated with the q(eiθ)
q(z) logµ′ac(e

iθ)

function which we denote by:

u(r, x) =
1

2π

∫ 2π

0

{
1− r2

1− 2r cos(x− θ) + r2
q(eiθ)

q(z)
logµ′ac(e

iθ)

}
dθ

The function u is harmonic in the unit diskD since q(t) =
∏k |t− ςk|2Kk =

p(t) and p(eiθ) logµ′ac(e
iθ)dθ ∈ L1([0, 2π] , dθ).

Now consider the holomorphic function h(z) of which u(r, x) is the
real part. and require that h(0) be real to have the uniqueness of h.
The function sought will therefore be g(z) = exph(z). It is clear that

ReD̃(z) = Reg(z) ; (z = reix, r ∈ [0, 1[), so that D̃(z) = g(z).∣∣∣D̃(z)
∣∣∣ = |exp {Reh(z) + Imh(z)}| ,

= exp {Reh(z)} ,
= exp {u(r, x)} .

Then, for (z = reix, r ∈ [0, 1[), we have

∣∣∣D̃(reix)
∣∣∣2 = 2 exp {u(r, x)} ,

≤ 1

π

∫ 2π

0

{
q(eiθ)

q(z)
logµ′ac(e

iθ)
1− r2

1− 2r cos(x− θ) + r2

}
dθ.

By integrating with respect to x we obtain

1

2π

∫ 2π

0

∣∣∣D̃(reix)
∣∣∣2 dx ≤ 1

2π

∫ 2π

0

(
1

π

∫ 2π

0

q(eiθ)

q(z)
logµ′ac(e

iθ)A(x, θ)dθ

)
dx,

=
1

π

∫ 2π

0

q(eiθ)

q(z)
µ′ac(e

iθ)

(
1

2π

∫ 2π

0
A(x, θ)dx

)
dθ,

=
1

π

∫ 2π

0

q(eiθ)

q(z)
logµ′ac(e

iθ)dθ = C,

with A(x, θ) = 1−r2
1−2r cos(x−θ)+r2 ,
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which proves the first point . The second point is obvious. The third
point is already proved in [11] . To prove the last point we note that

D̃(0) = exp {h(0)} > 0 (h(0) ∈ R by construction).

Let G denotes the following set of complex numbers

G = {z ∈ C : |z| > 1} ∪ {∞} .

Definition 2.2. We say that f ∈ H2(G) if f is analytic in G and∫
Cr
|f(z)| |dz| ≤ C, r > 1, Cr = {z ∈ C : |z| = r}, and C is a constant

independent of r.

Lemma 2.3. Let µ ∈ (pS) and the function D̃out define outside the
unit circle by

D̃out(w) = exp

{
1

2π

∫ 2π

0

w + e−iθ

w − e−iθ
q(eiθ)

q(w)
logµ′ac(e

iθ)dθ

}
.

Then

1. D̃out(w) ∈ H2(G),

2. D̃out(w) 6= 0 for w ∈ G,
3.
∣∣∣D̃out(t)

∣∣∣2 = µ′ac(t) a.e. on T,

4. D̃out(∞) > 0.

Proof. Consider the function D̃ defined in (3), and construct the func-

tion D̃out as follows:{
D̃out(w) = D̃( 1

w ) for w ∈ G/ {∞} .
D̃out(∞) = D̃(0).

Then, the proof immediately follows from the above Lemma.

Definition 2.4. We say that f ∈ H2(G, p̃) if f(z) is analytic in G
and (f.D) ∈ H2(G) .

The space L2(T, µ′ac |dξ|) is the space of functions f defined on the

unit circle T, with values in C and for which
∫ +π
−π
∣∣f(eiθ)

∣∣2 µ′ac(θ)dθ <
+∞. Let f and g be in L2(T, µ′ac |dξ|), we define

〈f, g〉L2(T,µ′ac|dξ|) =
1

2π

∫ +π

−π
f(eiθ)g(eiθ)µ′ac(θ)dθ,

‖f‖2L2(T,µ′ac|dξ|) = 〈f, f〉L2(T,µ′ac|dξ|) ,
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then (L2(T, µ′ac |dξ|), ‖.‖L2(T,µ′ac|dξ|)), is a Hilbert space.

The properties of the space H2(G,µ′ac) are given in the following
theorem:

Theorem 2.5. Let f ∈ H2(G, p̃) . Then f has a.e. in T an angular

limit which is denoted by f̃ , f̃(eiθ) = limz→eiθ f(z). Moreover,

1. f̃ ∈ (L2(T, µ′ac |dξ|)
2. (H2(G, p̃), ‖.‖µ′ac) is a Hilbert space, where

‖f‖2µ′ac = 〈f, f〉µ′ac ,

〈f, g〉µ′ac =
〈
f̃ , g̃
〉
L2(T,µ′ac|dξ|)

=
1

2π

∫ +π

−π
f̃(eiθ)g̃(eiθ)µ′ac(θ)dθ.

For any f, g in ∈ H2(G, p̃) .
3. if f ∈ H2(G, p̃), then for every compact set K ⊂ G, there is a

constant C(K) ( C(K) depends only on K) such that

sup
z∈K
|f(z)| ≤ C(K) ‖f‖µ′ac

For the proof see [6].

2.2. Extremal properties of the orthogonal polynomials

We denote by Qn the monic polynomials of degree exactly equal to
n. Define mn(µ), mn(vl), mn(v), µ and µ̂ as the extremal values of the
following problems:
(2.1)

mn(µ) =

(
1

kn

)2

=

∥∥∥∥ 1

kn
ϕ

∥∥∥∥2
µ

= min
{
‖Qn‖2µ ;ϕn = zn + ..., Qn(∞) = 1

}
,

where

‖Qn‖2µ =
1

2π

∫ 2π

0

∣∣∣Qn(eiθ)
∣∣∣2 dµ(θ).

(2.2)

mn(vl) =

(
1

γln

)2

=

∥∥∥∥ 1

γln
ψn

∥∥∥∥2
vl

= min
{
‖Qn‖2vl ;Qn = zn + ..., Qn(∞) = 1

}
,

where

‖Qn‖2vl =
1

2π

∫ 2π

0

∣∣∣Qn(eiθ)
∣∣∣2 dµ(θ) +

l∑
k=1

Ak |Qn(zk)|2 ,
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(2.3)

mn(v) =

(
1

γn

)2

=

∥∥∥∥ 1

γn
Φn

∥∥∥∥2
v

= min
{
‖Qn‖2v ;Qn = zn + ..., Qn(∞) = 1

}
where

‖Qn‖2v =
1

2π

∫ 2π

0

∣∣∣Qn(eiθ)
∣∣∣2 dµ(θ) +

∞∑
k=1

Ak |Qn(zk)|2 .

(2.4) µ(p̃) = inf
{
‖ϕn‖2H2(G,p̃) : ϕn ∈ H2(G, p̃);ϕn(∞) = 1

}
, and

(2.5)

µ̂(v) = inf
{
‖ϕn‖2H2(G,p̃) : ϕn ∈ H2(G, p̃);ϕn(∞) = 1;ϕn(zk) = 0, k = 1, 2, ...

}
.

Denote by ϕ̂ and ϕ∞ the optimal solutions of the extremal problems
(2.4) and (2.5) , respectively.
We are now ready to state the lemmas which we need in the sequel.

Lemma 2.6. [1] Let ϕ ∈ H2(G, p̃) such that ϕ(∞) = 1 and ϕ(zk) = 0,
k = 1, 2, ..., and let

B∞(zk) =
∞∏
k=1

z − zk
zzk − 1

|zk|2

zk

be the Blashke product, then

B∞ ∈ H2(G, p̃), B∞(∞) = 1,
∣∣∣B̃∞(eiθ)

∣∣∣ =
∞∏
k=1

|zk|

with

B̃∞(eiθ) = lim
z→eiθ

B∞(z),
ϕ

B∞
∈ H2(G, p̃)

Lemma 2.7. [1] The extremal functions ϕ∗ and ϕ̂∗ are connected by
the relations

ϕ∞(z) = B∞(z).ϕ̂(z) and µ̂(v) =

[ ∞∏
k=1

|zk|

]2
µ(p̃)
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3. Main results

These are the main results of this paper.

Theorem 3.1. let v = µ+
∑∞

k=1Akδ(z−zk) such that µ is polynomial
Szegő on the unit circle,

∞∑
k=1

Ak < +∞, Ak > 0,

∞∑
k=1

(|zk| − 1) < +∞, |zk| > 1.

Then

(3.1) lim
l→∞

mn(vl) = mn(v),

(3.2) lim
l→∞

γln = γn.

Proof. The extremal property of 1
γln
ψn and the fact that Ak > 0

implies that

mn(vl) ≤
1

2π

∫ 2π

0

∣∣∣Φn(eiθ)
∣∣∣2 dµ(θ) +

l∑
k=1

Ak |Φn(zk)|2 ≤ mn(v), and

thus

(3.3) mn(vl) ≤ mn(v).

On the other hand, the extremal property of 1
γn

Φn implies that

mn(v) ≤ 1

2π

∫ 2π

0

∣∣∣ψn(eiθ)
∣∣∣2 dµ(θ) +

∞∑
k=1

Ak |ψn(zk)|2(3.4)

= mn(vl) +
∞∑

k=l+1

Ak |ψn(zk)|2 .(3.5)

According to the reproducing property of the kernel function Kn(ξ, z)
(see [13]), and ψn(z) ∈ Pn, we have

ψn(zk) =
1

2π

∫ 2π

0
ψn(eiθ)Kn(ξ, zk)dµ(θ)(3.6)
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The Scharwz inequality implies that

ψn(zk) =
1

2π

∫ 2π

0
ψn(eiθ)Kn(ξ, zk)dµ(θ)(3.7)

≤ mn(vl).
1

2π

∫ 2π

0
|Kn(ξ, zk)|2 dµ(θ)(3.8)

and the fact that Kn(ξ, zk) ∈ Pn
(3.9) |ψn(zk)|2 ≤ mn(vl).Kn(zk, zk)

The inequalities (1.7), (3.5), and (3.9) imply

mn(v) ≤ mn(vl) +

∞∑
k=l+1

Akmn(vl).Kn(zk, zk)(3.10)

= mn(vl)

[
1 + sup

k≥l+1
Kn(zk, zk)

∞∑
k=l+1

Ak

]
.(3.11)

so we get

mn(v)

mn(vl)
≤ 1 + δl where δl → 0, l→∞.(3.12)

Using (3.3) and (3.12), we obtain (3.1).Thus, we obtain (3.2) and the
theorem is proved.

Theorem 3.2. let v = µ+
∑∞

k=1Akδ(z−zk) such that µ is polynomial
Szegő measure on the unit circle and;

1.

(3.13)

∞∑
k=1

Ak < +∞, Ak > 0,

2.

(3.14)
∞∑
k=1

(|zk| − 1) < +∞, |zk| > 1,

3.

(3.15)
mn(vl)

mn(µ)
≤

(
l∏

k=1

|zk|2
)

Then

lim
n→∞

mn(v) = µ̂(v).(3.16)
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Proof. By passing to the limit when l tends to infinity and using
theorem (3.1) and the inequality (3.15), we obtain

mn(v) ≤

( ∞∏
k=1

|zk|

)2

mn(µ).

This implies, by lemma(2.7) , that

lim sup
n→∞

mn(v) ≤

( ∞∏
k=1

|zk|

)2

µ(p̃) = µ̂(v).

On the other hand, we can find function L in H2(G, p̃) , (see [6],[10]),
were

µ̂(v) ≤ ‖L(z)‖2H2(G,p̃) ≤ lim inf
n→∞

mn(v),

µ̂(v) ≤ lim inf
n→∞

mn(v).

The theorem is then proved.

Theorem 3.3. Let v = µ +
∑∞

k=1Akδ(z − zk) with µ as in the pre-
ceding theorem and such that

∞∑
k=1

Ak < +∞, Ak > 0,
∞∑
k=1

(|zk| − 1) < +∞ for |zk| > 1,

kn
γln
≤

l∏
k=1

|zk| .

Let {Φn}∞n=1 be the system of orthonormal polynomials associated to v
satisfying relations (1.8). Then

lim
n→∞

∥∥∥∥ 1

γn
Φn − ϕ∞

∥∥∥∥2
H2(G,p̃)

= 0(3.17)

Proof. Put

Hn =
1

2

(
1

γn
Φn + ϕ∞

)
.

Then
lim
n→∞

Hn(∞) = 1, Hn(zk) = 0, k = 1, ...

This implies that

lim inf
n→∞

‖Hn‖2H2(G,p̃) ≤ µ̂(v)
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Using the parallelogram law in H2(G, p̃), we obtain∥∥∥∥ 1

γn
Φn − ϕ∞

∥∥∥∥2
H2(G,p̃)

= 2

(∥∥∥∥ 1

γn
Φn

∥∥∥∥2
H2(G,p̃)

+ ‖ϕ∞‖2H2(G,p̃)

)
−4 ‖Hn‖2H2(G,p̃)

Hence

lim sup
n→∞

‖Hn‖2H2(G,p̃) ≤ 2 (µ̂(v) + µ̂(v))− 4µ̂(v) = 0

so that

lim
n→∞

∥∥∥∥ 1

γn
Φn − ϕ∞

∥∥∥∥2
H2(G,p̃)

= 0
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