DOI QR코드

DOI QR Code

Numerical evaluation of effects of shear span, stirrup spacing and angle of stirrup on reinforced concrete beam behaviour

  • Ozkilic, Yasin Onuralp (Department of Civil Engineering, Faculty of Engineering, Necmettin Erbakan University) ;
  • Aksoylu, Ceyhun (Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University) ;
  • Arslan, Musa Hakan (Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University)
  • 투고 : 2021.02.10
  • 심사 : 2021.06.09
  • 발행 : 2021.08.10

초록

Shear and bending strength of reinforced concrete beams depend on many parameters. It is extremely important to take the necessary precautions in terms of shear in order for the beams to reach their bending capacity. For this reason, it is necessary to determine the effective parameters especially on shear capacity in beams. However, the actual capacity calculation is quite difficult according to regulations that are very conservative in terms of design. Therefore, many experimental studies have been conducted on the shear capacity of the beams. However, this situation is not meaningful in terms of both time and cost, since many experiments will be required to interpret the beam shear behavior, which depends on many parameters. For this reason, the use of advanced software whose verification is performed according to experimental data has become widespread. In this study, a numerical study was carried out on 36 different beam models using the ABAQUS finite element program to examine the effect of the shear span/effective depth (av/d) ratio, stirrup spacing (sw) and the angle of stirrup (α). The results showed that as the av/d increase, the behavior of a shear deficient beam tends to typical bending behavior. Although the effect of stirrup angle on shear capacity is quite high, stirrup angles of 30° and 60° give very similar results. The effect of stirrup spacing is quite limited at relatively high av/d. Stirrups with 90° do not contribute to ductility in beams with high av/d.

키워드

참고문헌

  1. ABAQUS, G. (2011), Abaqus 6.11, Dassault Systemes Simulia Corporation, Providence, RI, USA.
  2. ACI318-14 (2014), Building Code Requirements for Structural Concrete and Commentary, Detroit, Mich.
  3. ACI440.2R-17 (2017), Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, American Concrete Institute, Farmington Hills, MI.
  4. Adalier, K. and Aydingun, O. (2001), "Structural engineering aspects of the June 27, 1998 Adana-Ceyhan (Turkey) earthquake", Eng. Struct., 23(4), 343-355. https://doi.org/10.1016/S0141-0296(00)00046-8.
  5. Ahmad, S.H., Khaloo, A. and Poveda, A. (1986), "Shear capacity of reinforced high-strength concrete beams", J. Proc., 83(2), 297-305.
  6. Ahmed, G.G.S. (2021), "Effect of using different installation positions for stirrups in enhancing the shear capacity of RC beams", Sustain. Issue. Infrastr. Eng., 80-92. https://doi.org/10.1007/978-3-030-62586-3_6.
  7. Aksoylu, C. (2021), "Experimental analysis of shear deficient reinforced concrete beams strengthened by glass fiber strip composites and mechanical stitches", Steel Compos. Struct., 40(2), 267. http://doi.org/10.12989/scs.2021.40.2.267.
  8. Aksoylu, C. and Kara, N. (2019), "Investigation of new generation precast concrete panel applications as reinforcement technique", Selcuk Univ. J. Eng. Sci. Tech., 7(2), 346-361. https://doi.org/10.15317/Scitech.2019.204.
  9. Aksoylu, C. and Kara, N. (2020), "Strengthening of RC frames by using high strength diagonal precast panels", J. Build. Eng., 31 101338. https://doi.org/10.1016/j.jobe.2020.101338.
  10. Aksoylu, C. and Sezer, R. (2018), "Investigation of precast new diagonal concrete panels in strengthened the infilled reinforced concrete frames", KSCE J. Civil Eng., 22(1), 236-246. https://doi.org/10.1007/s12205-017-1290-6.
  11. Aksoylu, C., Mobark, A., Arslan, M.H. and Erkan, I.H (2020), "A comparative study on ASCE 7-16, TBEC-2018 and TEC-2007 for reinforced concrete buildings", Revista de la Construccion, 19(2), 282-305. http://doi.org/10.7764/rdlc.19.2.282
  12. Aksoylu, C., Ozkilic, Y.O. and Arslan, M.H. (2020b), "Damages on prefabricated concrete dapped-end purlins due to snow loads and a novel reinforcement detail", Eng. Struct., 225, 111225. https://doi.org/10.1016/j.engstruct.2020.111225.
  13. Aksoylu, C., Ozkilic, Y.O., Yazman, S., Lokman, G. and Arslan, M.H. (2021), "Inceltilmis uclu onuretimli asik kirislerinin yuk tasima kapasitelerinin deneysel ve numerik olarak irdelenmesi ve cozum onerileri", Teknik Dergi., 32(3), 10823-10858. https://doi.org/10.18400/tekderg.667066.
  14. Aksoylu, C., Yazman, S., Ozkilic, Y.O., Gemi, L. and Arslan, M.H. (2020a), "Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite", Compos. Struct., 249, 112561. https://doi.org/10.1016/j.compstruct.2020.112561.
  15. Alih, S. and Khelil, A. (2012), "Behavior of inoxydable steel and their performance as reinforcement bars in concrete beam: Experimental and nonlinear finite element analysis", Constr. Build. Mater., 37, 481-492. https://doi.org/10.1016/j.conbuildmat.2012.07.038.
  16. Alsdudi, M. (2021), "Determination of optimum frp composite amount in strengthening reinforced concrete beams with inadequate shear strength", Master thesis. Konya Technical University, Konya.
  17. Amani, J. and Moeini, R. (2012), "Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network", Scientia Iranica, 19(2), 242-248. https://doi.org/10.1016/j.scient.2012.02.009.
  18. Angelakos, D., Bentz, E.C. and Collins, M.P. (2001), "Effect of concrete strength and minimum stirrups on shear strength of large members", Struct. J., 98(3), 291-300.
  19. Anil, O. and Yilmaz, T. (2015), "Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips", Steel Compos. Struct., 19(2), 417-439. http://doi.org/10.12989/scs.2015.19.2.417.
  20. Arslan H.D. and Koken, B., (2016), "Evaluation of the space syntax analysis in post-strengthening hospital buildings", Arch. Res., 6(4), 88-97. https://doi.org/10.5923/j.arch.20160604.02.
  21. Arslan, G. (2005), "Shear strength of reinforced concrete frame members under cyclic loads", Ph. D. Thesis, Yildiz Technical University, Istanbul.
  22. Arslan, G. (2008), "Cracking shear strength of RC slender beams without stirrups", J. Civil Eng. Manage., 14(3), 177-182. https://doi.org/10.3846/1392-3730.2008.14.14
  23. Arslan, G. (2010), "Shear strength of reinforced concrete slender beams", Proc. Inst. Civil Eng.-Struct. Build., 163(3), 195-205. https://doi.org/10.1680/stbu.2010.163.3.195.
  24. Arslan, G. (2014), "Shear strength of steel fiber reinforced concrete (SFRC) slender beams", KSCE J. Civil Eng., 18(2), 587-594. https://doi.org/10.1007/s12205-014-0320-x.
  25. Bazant, Z.P. and Kim, J.K. (1984), "Size effect in shear failure of longitudinally reinforced beams", ACI J., 81(38), 456-468.
  26. Bousselham, A. and Chaallal, O. (2004), "Shear strengthening reinforced concrete beams with fiber-reinforced polymer: assessment of influencing parameters and required research", ACI Struct. J., 101(2), 219-227.
  27. Bruneau, M. (2002), "Building damage from the Marmara, Turkey earthquake of August 17, 1999", J. Seismol., 6(3), 357-377. https://doi.org/10.1023/A:1020035425531.
  28. Cervenka, V., Jendele, L. and Cervenka, J. (2005), ATENA Program Documentation, Theory and User Manual, Cervenka Consulting, Prague.
  29. Chabib, H.E., Nehdi, M. and Said, A. (2006), "Predicting the effect of stirrups on shear strength of reinforced normal-strength concrete (NSC) and high-strength concrete (HSC) slender beams using artificial intelligence", Can. J. Civil Eng., 33(8), 933-944. https://doi.org/10.1139/l06-033.
  30. Cho, S. H. (2003), "Shear strength prediction by modified plasticity theory for short beams", ACI Struct. J., 100(1), 105-112.
  31. Cho, S.H. (2003), "Shear strength prediction by modified plasticity theory for short beams", Struct. J., 100(1), 105-112.
  32. Colajanni, P., La Mendola, L., Mancini, G., Recupero, A. and Spinella, N. (2014), "Shear capacity in concrete beams reinforced by stirrups with two different inclinations", Eng. Struct., 81, 444-453. https://doi.org/10.1016/j.engstruct.2014.10.011.
  33. Colajanni, P., Pagnotta, S., Recupero, A. and Spinella, N. (2020), "Shear resistance analytical evaluation for RC beams with transverse reinforcement with two different inclinations", Mater. Struct., 53(1), 18. https://doi.org/10.1617/s11527-020-1452-8.
  34. Dere, Y. (2017), "Assessing a retrofitting method for existing RC buildings with low seismic capacity in Turkey", J. Perform. Constr. Facil., 31(2), 04016098. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000969.
  35. Dere, Y. and Koroglu, M.A. (2017), "Nonlinear FE modeling of reinforced concrete", Int. J. Struct. Civil Eng. Res., 6(1), 71-74. https://doi.org/10.18178/ijscer.6.1.71-74
  36. Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis or limit design", Quart. Appl. Math., 10(2), 157-165. https://doi.org/10.1090/qam/48291
  37. EC8 (2005), Eurocode 8: Design of Structures for Earthquake Resistance, Part. 1 1998-1.
  38. El-Chabib, H., Nehdi, M. and Said, A. (2005), "Predicting shear capacity of NSC and HSC slender beams without stirrups using artificial intelligence", Comput. Concrete, 2(1), 79-96. https://doi.org/10.12989/cac.2005.2.1.079.
  39. Ferrotto, M.F., Cavaleri, L. and Di Trapani, F. (2018), "FE modeling of Partially Steel-Jacketed (PSJ) RC columns using CDP model", Comput. Concrete, 22(2), 143-152. https://doi.org/10.12989/cac.2018.22.2.143.
  40. Francavilla, A.B., Latour, M., Piluso, V. and Rizzano, G. (2020), "Design criteria for beam-to-column connections equipped with friction devices", J. Constr. Steel Res., 172, 106240. https://doi.org/10.1016/j.jcsr.2020.106240.
  41. Gambarova, P. and Karakoc, C. (1983), "A new approach to the analysis of the confinement role in regularly cracked concrete elements", H5-7, 251-261.
  42. Gemi, L., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2019), "Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite", Compos. Struct., 229, 111399. https://doi.org/10.1016/j.compstruct.2019.111399.
  43. Gemi, L., Madenci, E. and Ozkilic, Y.O. (2020), "Celik, cam FRP ve hibrit donatili betonarme kirislerin egilme performansinin incelenmesi", Duzce universitesi Bilim ve Teknoloji Dergisi., 8(2), 1470-1483.
  44. Gemi, L., Madenci, E. and Ozkilic, Y.O. (2021), "Experimental, analytical and numerical investigation of pultruded GFRP composite beams infilled with hybrid FRP reinforced concrete", Eng. Struct., 244, 112790. https://doi.org/10.1016/j.engstruct.2021.112790.
  45. Hawileh, R.A., Abdalla, J.A. and Tanarsla, M.H. (2012), "Modeling of nonlinear response of R/C shear deficient T-beam subjected to cyclic loading", Comput. Concrete, 10(4), 419-434. http://doi.org/10.12989/cac.2012.10.4.419.
  46. Inel, M., Ozmen, H.B. and Bilgin, H. (2008), "Re-evaluation of building damage during recent earthquakes in Turkey", Eng. Struct., 30(2), 412-427. https://doi.org/10.1016/j.engstruct.2007.04.012.
  47. Islam, M.R., Mansur, M.A. and Maalej, M. (2005), "Shear strengthening of RC deep beams using externally bonded FRP systems", Cement Concrete Compos., 27(3), 413-420. https://doi.org/10.1016/j.cemconcomp.2004.04.002.
  48. JCI (1965), Japan Concrete Institute, Japon.
  49. Kalyana Rama, J.S., Chauhan, D.R., Sivakumar, M.V.N., Vasan, A. and Murthy, A.R. (2017), "Fracture properties of concrete using damaged plasticity model-A parametric study", Struct. Eng. Mech., 64(1), 59-69. http://doi.org/10.12989/sem.2017.64.1.059.
  50. Kani, G. (1964), "The riddle of shear failure and its solution", J. Proc., 61(4), 441-468.
  51. Kani, G. (1966), "Basic facts concerning shear failure", J. Proc., 63(6), 675-692.
  52. Karakoc, C., Kuyuk, H.S., Koksal, H.O. and Caglar, N. (2010), "Yuksek ve normal dayanimli kesme donatisiz betonarme kirislerde egik catlama dayanimlarinin incelenmesi", Report.
  53. Karayiannis, C. and Chalioris, C. (1999), "Experimental investigation of the influence of stirrups on the shear failure mechanism of reinforced concrete beams", Proceedings of the 13th Hellenic Conference on Concrete, 1, Rethymnon, Greece.
  54. Keskin, R.S. (2017), "Predicting shear strength of SFRC slender beams without stirrups using an ANN model", Struct. Eng. Mech., 61(5), 605-615. http://doi.org/10.12989/sem.2017.61.5.605.
  55. Keskin, R.S. and Arslan, G. (2013), "Predicting diagonal cracking strength of RC slender beams without stirrups using ANNs", Comput. Concrete, 12(5), 697-715. https://doi.org/10.12989/cac.2013.12.5.697.
  56. Khuntia, M. and Stojadinovic, B. (2001), "Shear strength of reinforced concrete beams without transverse reinforcement", Struct. J., 98(5), 648-656.
  57. Kim, J.H. and Mander, J.B. (1999), "Truss modeling of reinforced concrete shear-flexure behavior", Multidisciplinary Center for Earthquake Engineering Research (MCEER), 99-0005.
  58. Kim, J.K. and Park, Y.D. (1996), "Prediction of shear strength of reinforced concrete beams without web reinforcement", ACI J., 93(3), 213-222.
  59. Kim, S.E., Choi, J.H., Pham, T.H., Truong, V.H., Kong, Z. and Vu, Q.V. (2020), "Behavior of composite CFST beam-concrete column joints", Steel Compos. Struct., 37(1), 75-90. https://doi.org/10.12989/scs.2020.37.1.075.
  60. Korkmaz, S.Z. (2020), "An analytical study about the use of steel plate shear walls to improve lateral rigidity of reinforced concrete framed structures", Lat. Am. J. Solid. Struct., 17(7). https://doi.org/10.1590/1679-78256100.
  61. Kupfer, H., Mang, R. and Karavesyroglou, M. (1983), "Ultimate limit state of shear zone of reinforced and prestressed concrete girders-an analysis taking aggregate interlock into account", Bauingenieur, 58 143-149.
  62. Lee, J.Y. and Kim, U.Y. (2008), "Effect of longitudinal tensile reinforcement ratio and shear span-depth ratio on minimum shear reinforcement in beams", ACI Struct. J., 105(2), 134-144.
  63. Li, W. and Leung, C.K. (2016), "Shear span-depth ratio effect on behavior of RC beam shear strengthened with full-wrapping FRP strip", J. Compos. Constr., 20(3), 04015067. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000627.
  64. Lu, Y. and Panagiotou, M. (2014), "Three-dimensional cyclic beam-truss model for nonplanar reinforced concrete walls", J. Struct. Eng., 140(3), 04013071. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000852.
  65. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020a), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806.
  66. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020b), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. https://doi.org/10.1016/j.compstruct.2020.112162.
  67. Madenci, E., Ozkilic, Y.O. and Lokman, G. (2020c), "Theoretical investigation on static analysis of pultruded GFRP composite beams", Akademik Platform Muhendislik ve Fen Bilimleri Dergisi., 8(3), 483-490.
  68. Mansour, M.Y., Dicleli, M., Lee, J.Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Eng. Struct., 26(6), 781-799. https://doi.org/10.1016/j.engstruct.2004.01.011.
  69. Miki, T. and Niwa, J. (2004), "Nonlinear analysis of RC structural members using 3D lattice model", J. Adv. Concrete Technol., 2(3), 343-358. https://doi.org/10.3151/jact.2.343.
  70. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., 14(5), 785-809. http://doi.org/10.12989/sss.2014.14.5.785.
  71. Moharrami, M., Koutromanos, I., Panagiotou, M. and Girgin, S.C. (2015), "Analysis of shear-dominated RC columns using the nonlinear truss analogy", Earthq. Eng. Struct. Dyn., 44(5), 677-694. https://doi.org/10.1002/eqe.2480.
  72. Mohr, O. (1900), "Welche Umstande bedingen die Elastizitatsgrenze und den Bruch eines Materials", Zeitschrift des Vereins Deutscher Ingenieure, 46(1524-1530), 1572-1577.
  73. Morsch, E. (1909), Concrete-steel Construction (der Eisenbetonbau), Engineering News Publishing Company.
  74. Morsch, E. (1922), "Reinforced concrete construction-theory and application (Der eisenbetonbau-seine theorie und anwendung)", K. Wittwer, Stuttgart, 1(Part 2), 112.
  75. Murthy, A.R. and Priya, D.S. (2017), "Weibull distribution based constitutive model for nonlinear analysis of RC beams", Struct. Eng. Mech., 61(4), 463-473. http://doi.org/10.12989/sem.2017.61.4.463.
  76. Naderpour, H. and Mirrashid, M. (2020), "Shear strength prediction of RC beams using adaptive neuro-fuzzy inference system", Scientia Iranica, 27(2), 657-670. https://doi.org/10.24200/SCI.2018.50308.1624.
  77. Nayal, R. and Rasheed, H.A. (2006), "Tension stiffening model for concrete beams reinforced with steel and FRP bars", J. Mater. Civil Eng., 18(6), 831-841. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:6(831).
  78. O'Reilly, G.J., Perrone, D., Fox, M., Monteiro, R. and Filiatrault, A. (2018), "Seismic assessment and loss estimation of existing school buildings in Italy", Eng. Struct., 168, 142-162. https://doi.org/10.1016/j.engstruct.2018.04.056.
  79. Okamura, H. and Higai, T. (1980), "Proposed design equation for shear strength of reinforced concrete beams without web reinforcement", Proc. JPN Soc. Civil Eng., 1980(300), 131-141. https://doi.org/10.2208/jscej1969.1980.300_131.
  80. Ozkilic, Y.O. (2020), "A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections", Steel Compos. Struct., 35(3), 353-370. https://doi.org/10.12989/scs.2020.35.3.353.
  81. Ozkilic, Y.O. (2021a), "Investigation of the effects of bolt diameter and end-plate thickness on the capacity and failure modes of end-plated beam-to-column connections", Research on Engineering Structures & Material. http://doi.org/10.17515/resm2021.275st0315.
  82. Ozkilic, Y.O. (2021b), "Optimized stiffener detailing for shear links in eccentrically braced frames", Steel Compos. Struct., 39(1), 35-50. https://doi.org/10.12989/scs.2021.39.1.035.
  83. Ozkilic, Y.O., Aksoylu, C. and Arslan, M.H. (2021a), "Experimental and numerical investigations of steel fiber reinforced concrete dapped-end purlins", J. Build. Eng., 36, 102119. https://doi.org/10.1016/j.jobe.2020.102119.
  84. Ozkilic, Y.O., Madenci, E. and Gemi, L. (2020), "Tensile and compressive behaviors of the pultruded GFRP lamina", Turkish J. Eng. (TUJE), 4(4), 169-175. https://doi.org/10.31127/tuje.631481.
  85. Ozkilic, Y.O., Yazman, S., Aksoylu, C., Arslan, M.H. and Gemi, L. (2021b), "Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening", Constr. Build. Mater., 275, 122173. https://doi.org/10.1016/j.conbuildmat.2020.122173.
  86. Paulay, T. and Priestley, M.N. (1992), "Seismic design of reinforced concrete and masonry buildings", A Wiley Interscience Publication, 135-146.
  87. Poli, S.D., Gambarova, P.G. and Karakoc, C. (1987), "Aggregate interlock role in RC thin-webbed beams in shear", J. Struct. Eng., 113(1), 1-19. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:1(1).
  88. Qissab, M.A. and Salman, M.M. (2018), "Shear strength of non-prismatic steel fiber reinforced concrete beams without stirrups", Struct. Eng. Mech., 67(4), 347-358. http://doi.org/10.12989/sem.2018.67.4.347.
  89. Rebeiz, K.S. (1999), "Shear strength prediction for concrete members", J. Struct. Eng., 125(3), 301-308. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(301).
  90. Ritter, W. (1899), "Die bauweise hennebique", Schweizerische Bauzeitung, 33(7), 59-61.
  91. Salama, A.E., Hassan, M. and Benmokrane, B. (2020), "Effect of GFRP shear stirrups on strength of two-way GFRP RC edge slabs: Experimental and finite-element investigations", J. Struct. Eng., 146(5), 04020056. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002593.
  92. Sanad, A. and Saka, M.P. (2001), "Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networks", J. Struct. Eng., 127(7), 818-828. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818).
  93. Seleemah, A.A. (2005), "A neural network model for predicting maximum shear capacity of concrete beams without transverse reinforcement", Can. J. Civil Eng., 32(4), 644-657. https://doi.org/10.1139/l05-003.
  94. Seleemah, A.A. (2012), "A multilayer perceptron for predicting the ultimate shear strength of reinforced concrete beams", J. Civil Eng. Constr. Technol., 3(2), 64-79. https://doi.org/10.5897/JCECT11.098.
  95. Shin, S.W., Lee, K.S., Moon, J.I. and Ghosh, S.K. (1999), "Shear strength of reinforced high-strength concrete beams with shear span-to-depth ratios between 1.5 and 2.5", Struct. J., 96(4), 549-556.
  96. Swamy, R. and Andriopoulos, A. (1974), "Contribution of aggregate interlock and dowel forces to the shear resistance of reinforced beams with web reinforcement", Spec. Publ., 42, 129-168.
  97. TBEC (2019), Turkish Seismic Earthquake Code, Ankara, Turkey.
  98. TS500 (2000), Turkish Building Code, Ankara, Turkey.
  99. Weibull, W. (1939), A Statistical Theory of Strength of Materials, IVB-Handl.
  100. Yu, Q. and Bazant, Z.P. (2011), "Can stirrups suppress size effect on shear strength of RC beams?", J. Struct. Eng., 137(5), 607-617. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000295.
  101. Zararis, P. and Papadakis, G. (1999), "Influence of the arrangement of reinforcement on the shear strength of RC beams", Proceedings of the 13th Hellenic Conference on Concrete., 1, Rethymnon, Greece.
  102. Zsutty, T.C. (1968), "Beam shear strength prediction by analysis of existing data", J. Proc., 65(11), 943-951.