DOI QR코드

DOI QR Code

광결정 표면을 이용한 드론용 마이크로 연소기 열광전 에너지변환시스템의 성능해석

Performance Analysis of Photonic Crystal Enhanced Micro-Combustor Thermophotovoltaic System for Drone Application

  • 이정헌 (국방과학연구소 해양기술연구원)
  • Lee, Junghun (Maritime Technology Research Institute, Agency for Defense Development)
  • 투고 : 2020.10.15
  • 심사 : 2021.04.30
  • 발행 : 2021.06.05

초록

In this paper, the electrical power output of the micro-combustor thermophotovoltiac(TPV) system was analyzed. The system consists of a micro-combustor, photonic crystals(PhCs), and photovoltaic cells(PV cells). The system has a micro-combustor that can achieve over 1,000 K surface temperature by consuming 2.5 g/h hydrogen fuel. Also, this system incorporates current state-of-the-art PhCs surfaces(2D Ta PhCs and Tandem Filter) to increase electrical power output. In addition, InGaAsSb PV cell, which bandgap is 0.55 eV, was applied to convert a wide range of radiative energy. The performance analysis shows that a single micro-combustor TPV system can produce 0.4 W ~ 27.7 W electrical power with the temperature change of emitter(900 K ~ 1,500 K) and PV cell(250 K ~ 400 K).

키워드

참고문헌

  1. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang., "A Nanophotonic Solar Thermophotovoltaic Device," Nature Nanotechnology 9, pp. 126-130, 2014. https://doi.org/10.1038/nnano.2013.286
  2. W. R. Chan, V. Stelmakh, W. R. Allmon, C. M. Waits, M. Soljacic, J. D. Joannopoulos, and I. Celanovic., "An Integrated Microcombustor and Photonic Crystal Emitter for Thermophotovoltaics," Journal of Physics: Conference Series 773, 012108, 2016.
  3. J. Lee, S. Cheon, S. Hong, and Y. Nam., "A Radioisotope Thermophotovoltaic Converter with Nanophotonic Emitters and Filters," International Journal of Heat and Mass Transfer 108, pp. 1115-1125, 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.049
  4. Q. Peng, W. Yang, Jiaquiang E, H. Xu, Z, Li, W, Yu, Y, Tu, Y. Wu., "Experimental Investigation on Premixed Hydrogen/Air Combustion in Varied Size Combustors Inserted with Porous Medium for Thermophotovoltaic System Applications," Energy Conversion and Management 200, 112086, 2019. https://doi.org/10.1016/j.enconman.2019.112086
  5. V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljacic, and I. Celanovic, "Recent Developments in High-Temperature Photonic Crystals for Energy Conversion," Energy & Environmental Science 5, 8815, 2012. https://doi.org/10.1039/c2ee22731b
  6. E. Brown, G. Nichols, P. Baldasaro, D. DePoy, S. Burger, L. Danielson, W. Topper, T. Tahmlow., "The Status of Thermophotovoltaic Energy Conversion Technology at Lockheed Martin Corp, Department of Energy," United States, 2003.
  7. M. Garin, D. Hernandez, T. Trifonov, and R. Alcubilla., "Three-Dimensional Metallo-Dielectric Selective Thermal Emitters with High-Temperature Stability for Thermophotovoltaic Applications," Solar Energy Material & Solar Cells 134, pp. 22-28, 2015. https://doi.org/10.1016/j.solmat.2014.11.017
  8. R. Bhatt, I. Kravchenoko, and M. Gupta., "High-Efficiency Solar Thermophotovoltaic System Using a Nanostructure-based Selective Emitter," Solar Energy 197, pp. 538-545, 2020. https://doi.org/10.1016/j.solener.2020.01.029
  9. T. A. Walsh, J. A. Bur, Y. Kim, T. Lu, and S. Lin., "High-Temperature Metal Coating for Modification of Photonic Band Edge Position," Journal of Optical Society of America, Vol. 26, No. 7, 2009.
  10. F. O'sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K, Wada., "Optical Characteristics of One-Dimentional Si/SiO2 Photonic Crystals for Thermophotovoltaic Applications," Journal of Applied Physics 97, 033529, 2005. https://doi.org/10.1063/1.1849437
  11. W. Chan, R. Huand, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic., "Modeling Low-Bandgap Thermophotovoltaic Diodes for High-Efficiency Portable Power Generators," Solar Energy Material & Solar Cells 94, pp. 509-514, 2010. https://doi.org/10.1016/j.solmat.2009.11.015
  12. A. Lenert, Y. Nam, D. M. Bierman, and E. N. Wang., "Role of Spectral Non-Idealities in the Design of Solar Thermophotovoltaics," Optics Express 22, A1604-A1618, 2014. https://doi.org/10.1364/OE.22.0A1604
  13. W. Shockley, and H. J. Queisser., "Detailed Balance Limit of Efficiency of p-n Junction Solar Cells," Journal of Applied Physics 32, 510, 1961. https://doi.org/10.1063/1.1736034
  14. X. Yang, Z. He, S. Cha, L. Zhao, S. Dong, and H. Tan., "Parametric Analysis on the Combustion and Thermal Performance of a Swirl Micro-Combustor for Micro Thermophotovoltaic System," Energy 198, 117312, 2020. https://doi.org/10.1016/j.energy.2020.117312
  15. Jiaqiang E, W. Zuo, X. Liu, Q. Peng, Y. Deng, and H. Zhu., "Effects of Inlet Pressure on Wall Temperature and Exergy Efficiency of the Micro-Cylindrical Combustor with a Step," Applied Energy 175, pp. 337-345, 2016. https://doi.org/10.1016/j.apenergy.2016.05.039