DOI QR코드

DOI QR Code

Fire Risk Rating Evaluation of Organic Insulation Materials

유기 단열재의 화재위험성 등급 평가

  • You, Ji Sun (Fire & Disaster Prevention Research Center, Kangwon National University) ;
  • Jeon, Nam (Real-scale Fire Testing & Research Center) ;
  • Chung, Yeong-jin (Department of Fire Protection Engineering, Kangwon National University)
  • 유지선 (강원대학교 소방방재연구센터) ;
  • 전남 (한국건설생활환경시험연구원) ;
  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2021.05.15
  • Accepted : 2021.06.17
  • Published : 2021.08.10

Abstract

In this study, poly isocyanurate foam (PIR), poly urethane foam (PUR), and phenol foam (PF) of organic insulation materials were selected, and investigated using a cone calorimeter, as per ISO 5660-1. Standard materials (PMMA) were used to standardize the fire hazard assessment, and the fire risk was classified and evaluated by Chung's equations-III and IV. The fire performance index-II value of Chung's equations-II was the highest value with PF of 14.77 s2/kW. And the PUR was 0.08 s2/kW, the lowest value of fire performance index-II value. The fire growth index-II value was the lowest value with PF of 0.01 kW/s2. And the PUR was 1.14 kW/s2, the highest value of fire growth index-II value. The fire performance index-III (FPI-III) of Chung's equations-III had the lowest value for PUR (0.11) and the highest for PF (20.23). The PUR showed the highest value of the fire growth index-III (FGI-III) as 14.25, while the PF exhibited 0.13 regarded as the safest materials. The fire risk index-IV (FRI-IV) value of Chung's equation-IV was in the following order: PUR (130.03) >> PIR (19.13) > PMMA (1.00) > PF (0.01). Therefore, it was concluded that the fire risk associated with PF is the lowest, whereas that associated with PUR is the highest.

본 연구에서는 유기 단열재인 poly isocyanurate foam (PIR), poly urethane foam (PUR), phenol foam (PF)을 선정하여 ISO 5660-1의 기준에 따라 콘칼로리미터(cone calorimeter)를 이용하여 측정하였다. 화재위험성 평가를 표준화하기 위하여 기준물질(PMMA)을 사용하여 Chung's equations-III와 Chung's equation-IV에 의한 화재위험성을 등급화하여 평가하였다. Chung's equations-II의 화재성능지수-II 값은 PF가 14.77 s2/kW로 화재성능지수-II가 가장 높았고, PUR이 0.08 s2/kW로 화재성능지수-II가 가장 낮았다. 화재성장지수-II 값은 PF가 0.01 kW/s2로 화재성장지수-II가 가장 낮았고, PUR이 1.14 kW/s2로 화재성장지수-II가 가장 높았다. Chung's equations-III의 화재성능지수-III에서 PUR이 0.11로 화재성능지수-III가 가장 낮게 나타났고, PF가 20.23으로 화재성능지수-III가 가장 높았다. FGI-III에서는 PUR이 14.25로 화재성장지수-III가 가장 높게 나타났고, PF가 0.13으로 가장 안전한 물질로 판단하였다. 그리고 Chung's equation-IV의 화재위험성지수-IV는 PUR (130.03) >> PIR (19.13) > PMMA (1.00) > PF (0.01)의 순서로 나타났다. 따라서 PF가 화재위험성이 가장 낮고, PUR이 가장 높은 것으로 판단하였다.

Keywords

Acknowledgement

이 논문은 2018년도 강원대학교 대학회계 학술연구조성비로 연구하였습니다(No. 620180015).

References

  1. E. Asimakopoulou, J. Zhang, M. McKEE, K. Wieczorek, A. Krawczyk, M. Andolfo, M. Scatto, M. Sisani, and M. Bastianini, Assessment of fire behaviour of polyisocyanurate (PIR) insulation foam enhanced with lamellar inorganic smart fillers, J. Phys.: Conf. Ser., 1107, 1-7 (2018).
  2. J. P. Hidalgo, J. L. Torero, and S. Welch, Fire performance of charring closed-cell polymeric insulation materials: Polyisocyanurate and phenolic foam, Fire Mater., 42, 358-373 (2018). https://doi.org/10.1002/fam.2501
  3. J. W. Park and N. W. Cho, A study on the cone calorimeter evaluation method of sandwich panels, Fire Sci. Eng., 31, 74-82 (2017). https://doi.org/10.7731/KIFSE.2017.31.1.074
  4. L. Hu, J. A. Mike, and B. Merci, Special issue on fire safety of high-rise buildings, Fire Technol., 53, 1-3 (2017). https://doi.org/10.1007/s10694-016-0638-7
  5. B. Aydogan and N. Usta, Cone calorimeter evaluation on fire resistance of rigid polyurethane foams filled with nanoclay/intumescent flame retardant materials, Res. Eng. Struct. Mater., 4, 71-77 (2018).
  6. P. Pater, T. R. Hull, A. A. Stec, and R. E. Lyon, Influence of physical properties on polymer flammability in the cone calorimeter, Polym. Adv. Technol., 22, 1100-1107 (2011). https://doi.org/10.1002/pat.1943
  7. A. Tewarson, Generation of heat and chemical compounds in fires, SFPE Handbook of Fire Protection Engineering, 3rd. ed., 83-161, National Fire Protection Association, Quincy, Massachusetts (2002).
  8. T. J. Ohlemiller, J. R. Shields, K. M. Butler, B. L. Collins, and M. D. Seck, Exploring the role of polymer melt viscosity in melt flow and flammability behavior, New Developments and Key Market Trends in Flame Retardancy, Proceedings of the Fall Conference of the Fire Retardant Chemicals Assoc. Oct. 15-18, Ponte Vedra, FL, USA, 1-28 (2000).
  9. Q. Y. Xie, H. P. Zhang, and L. Xu, Large-scale experimental study on the effects of flooring materials on combustion behavior of thermoplastics, J. Macromol. Sci. A, 45, 529-533 (2008). https://doi.org/10.1080/10601320802100556
  10. T. Zhang, X. Zhou, and L. Yang, Experimental study of fire hazards of thermal-insulation material in diesel locomotive: Aluminum-polyurethane, Materials, 9, 1-17 (2016). https://doi.org/10.3390/ma9010001
  11. H. Vahabi, B. K. Kandola, and M. R. Saeb, Flame retardancy index for thermoplastic composites, Polymers, 11, 1-10 (2019). https://doi.org/10.3390/polym11010001
  12. R. Sonnier, A. Viretto, L. Dumazert, and B. Gallard, A method to study the two-step decomposition of binary blends in cone calorimeter, Combust. Flame, 169, 1-10 (2016). https://doi.org/10.1016/j.combustflame.2016.04.016
  13. V. Babrauskas, The cone calorimeter - A versatile bench-scale tool for the evaluation of fire properties, In S. J. Grayson and D. A. Smith (eds.), New Technology to Reduce Fire Losses and Costs, Elsevier Applied Science Publishers, London, UK, 78-87 (1986).
  14. M. M. Hirschler, Fire performance of organic polymers, Thermal Decomposition and Chemical Composition, ACS Symp Series, Washington DC, 797, 293-306 (2001).
  15. ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Genever, Switzerland (2015).
  16. Y. J. Chung and E. Jin, Rating evaluation of fire risk for combustible materials in case of fire, Appl. Chem. Eng., 32, 75-82 (2021). https://doi.org/10.14478/ACE.2020.1103
  17. A. A. Stec and T. R. Hull, Assessment of the fire toxicity of building insulation materials, Energ. Buildings, 43, 498-506 (2011). https://doi.org/10.1016/j.enbuild.2010.10.015
  18. P. Gahlen, S. Frobel, A. Karbach, D. Gabriel, and M. Stommel, Experimental multi-scale approach to determine the local mechanical properties of foam base material in polyisocyanurate metal panels, Polym. Test., 93, 1-11 (2021).
  19. K. Chen, C. Tian, S. Liang, X. Zhao, and X. Wang, Effect of stoichiometry on the thermal stability and flame retardation of polyisocyanurate foams modified with epoxy resin, Polym. Degrad. Stabil., 150, 105-113 (2018). https://doi.org/10.1016/j.polymdegradstab.2018.02.015
  20. M. Kuranska, U. Cabulis, M. Auguscik, A. Prociak, J. Ryszkowska, and M. Kirpluks, Bio-based polyurethane-polyisocyanurate composites with an intumescent flame retardant, Polym. Degrad. Stabil., 127, 11-19 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.02.005
  21. M. Pfundstein, Insulating Materials: Principles, Materials, Applications, De Gruyter GmbH (2013).
  22. X. Liu, J. Hao, and S. Gaan, Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials, RSC Adv., 6, 74742-74756 (2016). https://doi.org/10.1039/C6RA14345H
  23. W. Xu, G. J. Wang, and X. R. Zheng, Research on highly flame-retardant rigid PU foams by combination of nanostructured additives and phosphorus flame retardants, Polym. Degrad. Stab., 111, 142-150 (2015). https://doi.org/10.1016/j.polymdegradstab.2014.11.008
  24. J. Troizsch, Plastics Flammability Handbook 3E: Principles, Regulations, Testing, and Approval, Hanser Publications (2004).
  25. Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018). https://doi.org/10.14478/ACE.2018.1076