DOI QR코드

DOI QR Code

반복 유한요소 결함 성장 해석을 위한 결함 모델링 및 응력확대계수 계산 절차의 타당성 검증

Validation of Crack-Tip Modeling and Calculation Procedure for Stress Intensity Factor for Iterative Finite Element Crack Growth Analysis

  • Gi-Bum Lee (서울과학기술대학교 기계시스템디자인공학과) ;
  • Youn-Young Jang (서울과학기술대학교 기계시스템디자인공학과) ;
  • Nam-Su Huh (서울과학기술대학교 기계시스템디자인공학과) ;
  • Sunghoon Park ((주)브이이엔지) ;
  • Noh-Hwan Park ((주)브이이엔지) ;
  • Jun Park ((주)브이이엔지)
  • 투고 : 2021.05.30
  • 심사 : 2021.06.18
  • 발행 : 2021.06.30

초록

As the material aging of nuclear power plants has been progressing in domestic and overseas, crack growth becomes one of the most important issues. In this respect, the crack growth assessment has been considered an essential part of structural integrity. The crack growth assessment for nuclear power plants has been generally performed based on ASME B&PV Code, Sec. XI but the idealization of crack shape and the conservative solutions of stress intensity factor (SIF) are used. Although finite element analysis (FEA) based on iterative crack growth analysis is considered as an alternative method to simulate crack growth, there are yet no guidelines to model the crack-tip spider-web mesh for such analysis. In this study, effects of various meshing factors on FE SIF calculation are systematically examined. Based on FEA results, proper criteria for spider-web mesh in crack-tip are suggested. The validation of SIF calculation method through mapping initial stress field is investigated to consider initial residual stress on crack growth. The iterative crack-tip modeling program to simulate crack growth is developed using the proposed criteria for spider-web mesh design. The SIF results from the developed program are validated by comparing with those from technical reports of other institutes.

키워드

과제정보

본 논문은 한국수력원자력(주)에서 재원을 부담하여 수행한 연구결과 입니다. (NO. 제2019-기술-07호)

참고문헌

  1. Boo, M. H., Lee, K. S., Oh, C. K. and Kim, H. S, 2017, "Current Status on the Development and Application of Fatigue Monitoring System for Nuclear Power Plants," Trans. of the KPVP, Vol. 13, No. 2, pp. 1-18. doi:http://dx.doi.org/10.20466/KPVP.2017.13.2.001
  2. EPRI, 1994, "PWSCC of Alloy 600 Materials in PWR Primary System Penetrations," Electric Power Research Institute, Palo Alto, CA, TR-103696.
  3. USNRC, 2014, "Managing PWSCC in Butt Welds by Mitigation and Inspection," U. S. Nuclear Regulatory Commission, Washington, DC, NUREG/CR-7187.
  4. Cipolla, R. C., DeBoo, G. H., Bamford Jr, W. H., Yoon, K. K. and Hasegawa, K., 2003, "Flaw Evaluation Procedures and Acceptance Criteria for Nuclear Components in ASME Code Section XI," Proc. of ASME 2003 PVP Conference, Cleveland, Ohio, July 20-24, PVP2003-2022.
  5. Kim, J. S., 2016, "Investigation on the Studies for Welding Residual Stresses in Nuclear Components," Trans. of the KPVP, Vol. 12, No. 1, pp. 30-40. doi:https://doi.org/10.20466/KPVP.2016.12.1.030
  6. Lee, K. S., Lee, S. H., Lee, J. S., Lee, J. G. and Lee, S. G., 2013, "Root Cause Analysis and Structural Integrity Evaluation for a Crack in a Reactor Vessel Upper Head Penetration Nozzle," Trans. of the KPVP, Vol. 9, No. 1, pp. 56-61. doi:https://doi.org/10.20466/KPVP.2013.9.1.056
  7. Kim, T. J., Gim, J. M., Bae, K. D., Kim, S. C., Huh, N. S., Kim, Y. J. and Yang, J. S., 2017, "Unstable Fracture Assessment of Weldments of Weldolets Using CDFD Method Based on Elastic-Plastic Finite Element Analyses," Proc. of SMiRT-24 Conference, Busan, August 20-25, IASMiRT-2017-08-20.
  8. EPRI, 2007, "Material Reliability Program: Advanced FEA Evaluation of Growth of Postulated Circumferential PWSCC Flaws in Pressurizer Nozzle Dissimilar Metal Welds (MRP-215), Rev.1," Electric Power Research Institute, Palo Alto, CA, TR-1015400.
  9. Anderson, T. L., 2003, Fracture Mechanics: Fundamentals and Applications, CRC press, Boca Raton.
  10. Raju, I. S. and Newman, J. C., 1979, "Stress-Intensity Factors for a Wide Lange of Semi-Elliptical Surface Cracks in Finite-Thickness Plates," Eng. Fract. Mech., Vol. 11, No. 4, pp. 817-829. doi:https://doi.org/10.1016/0013-7944(79)90139-5
  11. Dassault Systemes Corp., 2020, "ABAQUS/Standard User's Manuals," Ver. 2020.
  12. Kim, E. J., Park, E. J. and Yoo, S. H., 2003, "An Analysis of the Redistribution of Residual Stress due to Crack Propagation Initially through Residual Tensile Stress Field by Finite Element Method," J. Weld Joi, Vol. 21, No. 7, pp. 71-77. doi:https://doi.org/10.5781/KWJS.2008.26.6.092
  13. Tada, H., Paris, P. C. and Irwin, G. R., 1973, The Stress Analysis of Cracks. Handbook, ASME press, New York.
  14. Lee, K. H., Oh, Y. J., Park, H. B., Chung, H. S., Chung, H. J. and Kim, Y. J., 2011, "Stress Intensity Factors for Axial Cracks in CANDU Reactor Pressure Tubes," Trans. of the KPVP, Vol. 7, No. 1, pp. 17-26. doi:http://dx.doi.org/10.20466/KPVP.2011.7.1.017
  15. Rudland, D., Shim, D. J., Zhang, T. and Wilkowski, G., 2007, "Implication of Wolf Creek Indications-Final Report," Engineering Mechanics Corporation of Columbus, Columbus, OH, ADAMS ML072470394.