DOI QR코드

DOI QR Code

Three-dimensional modeling of monopiles in sand subjected to lateral loading under static and cyclic conditions

  • Barari, Amin (Department of the Built Environment, Aalborg University) ;
  • Zeng, Xiangwu (Stevens Institute of Technology) ;
  • Rezania, Mohammad (Computational Mechanics, Civil Research Group, School of Engineering, University of Warwick) ;
  • Ibsen, Lars Bo (Department of the Built Environment, Aalborg University)
  • Received : 2021.01.15
  • Accepted : 2021.07.03
  • Published : 2021.07.25

Abstract

Here, the results of a three-dimensional finite element study of the complex interaction of horizontal and moment loads (HM) on offshore monopiles as failure envelope, are reported. A new design criterion is described which is based on critical length, ultimate limit states, load characteristics and Eigen-frequency to ensure stable behavior of laterally loaded monopiles. Numerical analyses were performed to examine nonlinear interaction of a soil-pile system for 10,000 load cycles. The resulting framework can predict angular rotation due to cyclic loading. According to the loading level and duration of a load, elastic strains accumulate in the vicinity of a pile. Fairly intermediate two-way cyclic loading induced the largest rotations irrespective of the analysis performed (i.e., drained versus partially drained). Based on the regression coefficients of the non-dimensional frameworks used, accumulating rocking deformations of a pile at seabed level appear to be dependent on cyclic load ratio, drainage condition, and duration of loading. For safe design, sensitivity of the natural frequency of offshore wind turbine (OWT) at a monopile critical length as well as shorter lengths were also examined. The analytical model proposed here for determining the natural frequency of an OWT considers that soil-structure interaction (SSI) can be represented by monopile head springs characterized by lateral stiffness, KL, rotational stiffness, KR, cross-coupling stiffness, KLR, and parabolic soil stiffness variation with depth.

Keywords

References

  1. Adhikari, S. and Bhattacharya, S. (2011), "Vibrations of windturbines considering soil-structure interaction", Wind Struct., 14(2), 85-112. http://dx.doi.org/10.12989/was.2011.14.2.085.
  2. API (2000), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design, American Petroleum Institute, Washington, U.S.A.
  3. Arany, L., Bhattacharya, S., Adhikari, S., Hogan, S.J. and MacDonald, J.H.G. (2015), "An analytical model to predict the natural frequency of offshore wind turbines on three-springs flexible foundations using two different beam models", Soil Dyn. Earthq. Eng., 74, 40-45. https://doi.org/10.1016/j.soildryn.2015.03.007.
  4. Augustesen, A., Sorensen, S., Ibsen, L. and Brodbaek, K. (2000), Comparison of Calculation Approaches for Monopiles for Offshore Wind Turbines, Numer. Meth. Geotech. Eng., CRC Press, 901-906.
  5. Barari, A. and Ibsen, L.B. (2017), "Insight into the lateral response of offshore shallow foundations", Ocean Eng., 144(1), 203-210. https://doi.org/10.1016/j.oceaneng.2017.08.012.
  6. Barari, A. and Ibsen, L.B. (2018), "A macro-element approach for non-linear response of offshore skirted footings", In Civil Infrastructures Confronting Severe Weathers and Climate Changes Conference, Springer, Cham. https://doi.org/10.1007/978-3-319-95771-5_11.
  7. Barari, A., Bagheri, M., Rouainia, M. and Ibsen, L.B. (2017), "Deformation mechanisms of offshore monopile foundations accounting for cyclic mobility effects", Soil Dyn. Earthq. Eng., 97, 439-453. https://doi.org/10.1016/j.soildyn.2017.03.008.
  8. Barari, A., Bayat, M., Saadati, M., Ibsen, L.B. and Vabbersgaard, L.A. (2015), "Transient analysis of monopile foundations partially embedded in liquefied soil", Geomech. Eng., 8(2), 257-282. https://doi.org/10.12989/gae.2015.8.2.257.
  9. Bisoi, S. and Haldar, S. (2014), "Dynamic analysis of offshore wind turbine in clay considering soil-monopile-tower interaction", Soil Dyn. Earthq. Eng., 63, 19-35. https://doi.org/10.1016/j.soildyn.2014.03.006.
  10. Bouzid, D.A., Bhattacharya, S. and Ostmane, L. (2018), "Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element considering soil-monopile interaction", J. Rock Mech. Geotech. Eng., 10, 333-346. https://doi.org/10.1016/j.jrmge.2017.11.010.
  11. Briaud, J., Smith, T.D. and Meyer, B.J. (1983), "Using the pressuremeter curve to design laterally loaded piles", Proceedings of the Annual Offshore Technology Conference, Houston, Texas, U.S.A., May.
  12. Carter, J.P. and Kulhawy, F.H. (1992), "Analysis if laterally loaded shafts in rock", J. Geotech. Eng., 118(6), 839-855. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:6(839)
  13. Chen, R.P., Sun, Y.X., Zhu, B. and Guo, W.D. (2015), "Lateral cyclic pile-soil interaction studies on a rigid model monopile", Proc. Inst. Civ. Eng. Geotech. Eng., 168(GE2),120-130. https://doi.org/10.1680/geng.14.00028.
  14. Chong, S.H., Shin, H.S. and Cho, G.C. (2019), "Numerical analysis of offshore monopile during repetitive lateral loading", Geomech. Eng., 19(1), 79-91. http://dx.doi.org/10.12989/gae.2019.19.1.079.
  15. Chopra, A.K. (2007), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Upper Saddle River, New Jersey: Pearson Education Inc.,
  16. Cuellar, P. (2011), "Pile foundations for offshore wind turbines: Numerical and experimental investigations on the behaviour under short-term and long-term cyclic loading", Ph.D. Dissertation, Technische Universitat Berlin, Berlin, Germany.
  17. Davisson, M.T. (1970), Lateral Load Capacity of Piles, Highway Research Record, (333).
  18. DNV (1992), Classification Notes No. 30.4, Foundations, Det Norske Veritas, Oslo, Norway.
  19. Doherty, P. and Gavin, K. (2012), "Laterally loaded monopile design for offshore wind farms", Proceedings of the Institution of Civil Engineers: Energy, 165(1), 7-17. https://doi.org/10.1680/ener.11.00003.
  20. Elgamal, A., Lu, J. and Forcellini, D. (2010), "Mitigation of liquefaction-induced lateral deformation in a sloping stratum: Three-dimensional numerical simulation", J. Geotech. Geoenvironment. Eng., 135(11), 1672-1682. https://doi.org/10.1061/(ASCE)GT.1943 5606.0000137.
  21. Elgamal, A., Yang, Z., Parra, E. and Ragheb, A. (2003), "Modeling of cyclic mobility in saturated cohesionless soils", Int. J. Plast., 19(6), 883-905. https://doi.org/10.1016/S0749-6419(02)00010-4.
  22. EWEA (2016), The European Offshore Wind Industry-Key Trends and Statistics 2015.
  23. Festag, G. (2003), Experimentelle und Numerische Untersuchungen zum Verhalten von Granularen Materialien unter Zyklischer Beanspruchung, Master Thesis, Technische Universitat Darmstadt, Darmstadt, Germany,
  24. Foglia, A. and Ibsen, L.B. (2014). Monopod Bucket Foundation under Cyclic Lateral Loading, DCE Technical Report No. 176, Department of Civil Engineering, Aalborg University.
  25. Ghasemi, G., Barari, A. and Choobbasti, A.J. (2014), "Seismic analysis of pile-soil interaction in liquefiable soils via gap elements", Advan. Soil Dyn. Found. Eng., 323-332. https://doi.org/10.1061/9780784413425.033.
  26. Hamre, L., Khankandi, S., Strom, P. and Athanasiu, C. (2010), Lateral Behaviour of Large Diameter Monopiles at Sheringham Shoal Wind Farm, in Frontiers in Offshore Geotechnics II, CRC Press, 575-580
  27. Helm, J., Laue, J. and Triantafyllidis, T. (2000), "Zur Verformungsentwicklung von Boden unterzyklischer Beanspruchung", Bautechnik, 77(6), 405-415. https://doi.org/10.1002/bate.200003070.
  28. Hendriyawan, H., Primananda, M.A., Puspita, A.D., Guo, C., Hamdhan, I.N., Tahir, M.M., Pham, B.T., Mu'azu, M.A. and Khorami, M. (2019), "Simplification analysis of suction pile using two dimensions finite element modeling", Geomech. Eng., 17(4), 317-322. https://doi.org/10.12989/gae.2019.17.4.31.
  29. Hettler, A. (1981), Verschiebungen Starrer und Elastischer Grundungskorper in Sand bei Monotoner und Zyklischer Belastung, Ph.D. Thesis, University of Karlsruhe, Germany.
  30. Higgins, W. and Basu, D. (2011), Fourier Finite Element Analysis of Laterally Loaded Piles in Elastic Media, Internal Geotechnical Report 2011-1. University of Connecticut, U.S.A. https://doi.org/10.1016/B978-0-12-809451-8.00014-X.
  31. Ibsen, L.B., Asghari, A., Bagheri, M. and Barari, A. (2014), "Response of monopiles in sand subjected to one-way and transient cyclic lateral loading", Advan. Soil Dyn. Found. Eng.: 312-322.
  32. Ibsen, L.B., Barari, A. and Larsen, K.A. (2015). "Effect of embedment on the plastic behavior of bucket foundations", J. Waterway, Port, Coastal Ocean Eng., 141(6), 06015005. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000284.
  33. Ibsen, L.B., Barari, A., Larsen, K.A. (2012), "Modified vertical bearing capacity for circular foundations in sand using reduced friction angle", Ocean Eng., 47, 1-6. https://doi.org/10.1016/j.oceaneng.2012.03.003.
  34. Jalbi, S., Shadlou, M. and Bhattacharya. (2018), "Impedance functions for rigid skirted caissons supporting offshore wind turbines", Ocean Eng., 150, 21-35. https://doi.org/10.1016/j.oceaneng.2017.12.040.
  35. Kagawa, T. and Kraft, L.M. (1980), "Lateral load-deflection relationships of piles subjected to dynamic loadings", Soils Found., 20(4), 19-34. https://doi.org/10.3208/sandf1972.20.4_19.
  36. Kim, G., Kyung, D., Park, D. and Lee, J. (2015), "CPT-based p-y analysis for mono-piles in sands under static and cyclic loading conditions", Geomech. Eng., 9(3), 313-328. https://doi.org/10.12989/gae.2015.9.3.313.
  37. Klinkvort, R. and Hededal, O. (2014), "Effect of load eccentricity and stress level on monopile support for offshore wind turbines", Canadian Geotech. J., 51(9), 966-974. https://doi.org/10.1139/cgj-2013-0475.
  38. Klinkvort, R.T., Black, J.A., Bayton, S.M., Haigh, S.K., Madabhushi, G.S.P., Blanc, M., Thorel, L., Zania, V., Bienen, B. and Gaudin, C. (2018), "A review of modelling effects in centrifuge monopile testing in sand", 9th Int. Conference Physical Modeling Geotech., ICPMG, London, United Kingdom.
  39. Lai, Y., Wang, L., Hong, Y. and He, B. (2020), "Centrifuge modeling of the cyclic lateral behavior of large-diameter behavior of large-diameter monopiles in soft clay: Effects of episodic cycling and reconsolidation", Ocean Eng., 200, 107048. https://doi.org/10.1016/j.oceaneng.2020.107048.
  40. Larsen, K.A., Ibsen, L.B. and Barari, A. (2013), "Modified expression for the failure criterion of bucket foundations subjected to combined loading", Canadian Geotech. J., 50 (12), 1250-1259. https://doi.org/10.1139/cgj-2012-0308.
  41. Laszlo, A., Bhattacharya, S., Macdonald, J. and Hogan, S.J. (2017), "Design of monopiles for offshore wind turbines in 10 steps", Soil Dyn. Earthq. Eng., 92, 126-152. https://doi.org/10.1016/j.soildyn.2016.09.024.
  42. LeBlanc, C., Houlsby, G.T. and Byrne, B.W. (2010), "Response of stiff piles in sand to long-term cyclic lateral loading", Geotechnique, 60(2), 79-90. https://doi.org/10.1680/geot.7.00196.
  43. Lin, S. and Liao, J. (1999), "Permanent strains of piles in sand due to cyclic lateral loads", J. Geotech. Geoenvironment. Eng., 125(9), 798-802. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(798).
  44. Little, R.L. and Briaud, J.L. (1988), Full Scale Cyclic Lateral Load Tests on Six Single Piles in Sand, Texas A and M Univ. College Station Dept of Civil Engineering.
  45. Long, J.H. and Vanneste, G. (1994), "Effects of cyclic lateral loads on piles in sand", J. Geotech. Geoenviron. Eng., 120(1), 225-244. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(225).
  46. Lopez-Querol, S., Cui, L. and Bhattacharya, S. (2017), "Numerical methods for SSI analysis of offshore wind turbine foundations", Wind Energy Eng., 275-297.
  47. Madsen, S., Pinna, R., Randolph, M.F. and Andersen, L.V. (2015), "Buckling of monopod bucket foundations - influence of boundary conditions and soil-structure interaction", Wind Struct., 21(6), 641-656. https://doi.org/10.12989/was.2015.21.6.641.
  48. Muir Wood, D. (2004), Geotechnical Modeling, CRC Press, London, U.K.
  49. Nielsen, S.D., Ibsen, L.B. and Nielsen, B.N. (2017), "Response of cyclic-loaded bucket foundations in saturated dense sand", J. Geotech. Geoenviron. Eng., 143(11), 04017086. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001787.
  50. Norris, G.M. (1986), "Theoretically based BEF laterally loaded pile analysis", Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, Nantes, France, 361-386.
  51. Pakar, I. and Bayat, M. (2012a), "Analytical study on the nonlinear vibration of Euler-Bernoulli beams", J. Vibroeng., 14(1), 216-224.
  52. Pakar, I. and Bayat, M. (2012b), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vibroeng., 14(1), 423-429.
  53. Parra, E. (1996), "Numerical modeling of liquefaction and lateral ground deformation including cyclic mobility and dilative behaviour in soil systems", Ph.D. Dissertation, Rensselaer Polytechnic Institute, New York, U.S.A.
  54. Peralta, P. and Achmus, M. (2010), "An experimental investigation of piles in sand subjected to lateral cyclic loads", Proceedings of the 7th International Conference on Physical Modelling in Geotechnics (ICPMG2010), Zurich, Switzerland.
  55. Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, Wiley, New York, U.S.A.
  56. Prakash, S. (1962), "Behavior of pile groups subjected to lateral loads", Ph.D. Dissertation, University of Illinois, Urbana, Chicago, U.S.A.
  57. Prevost, J.H. (1985), "A simple plasticity theory for frictional cohensionless soils", Soil Dyn. Earthq. Eng., 4(1), 9-17. https://doi.org/10.1016/0261-7277(85)90030-0.
  58. Randolph, M. (1981), "The response of flexible piles to lateral loading", Geotechnique, 31, 247-259. https://doi.org/10.1680/geot.1981.31.2.247.
  59. Rezania, M., Mousavi Nezhad, M., Zanganeh, H., Castro, J. and Sivasithamparam, N. (2017), "Modeling pile setup in natural clay deposit considering soil anisotropy, structure, and creep effects: Case study", Int. J. Geomech., 17(3), 04016075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000774.
  60. Rezania, M., Nguyen, H., Zanganeh, H. and Taiebat, M. (2018), "Numerical analysis of Ballina test embankment on a soft structured clay foundation", Comput. Geotech., 93, 61-74. https://doi.org/10.1016/j.compgeo.2017.05.013.
  61. Rezania, M., Sivasithamparam, N. and Mousavi Nezhad, M. (2014), "On the stress update algorithm of an advanced critical state elasto-plastic model and the effect of yield function equation", Fin. Elements Anal. Des., 90, 74-83. https://doi.org/10.1016/j.finel.2014.06.009.
  62. Roesen, H.R., Ibsen, L.B. and Andersen, L.V. (2013), "Experimental testing of monopiles in sand subjected to one-way and long-term cyclic lateral loading", Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, September.
  63. Rosquoet, F., Garnier, J., Thorel, L. and Canepa, Y. (2004), Horizontal Cyclic Loading of Piles Installed in Sand: Study of the Pile Head Displacement and Maximum Bending Moment, in Cyclic behaviour Soils Liquefaction Phenomena, 363-368.
  64. Truong, P., Lehane, B.M., Zania, V. and Klinkvort, R.T. (2019), "Empirical approach based on centrifuge testing for cyclic deformations of laterally loaded piles in sand", Geotechnique, 69(2), 133-145. https://doi.org/10.1680/jgeot.17.P.203.
  65. Vught, J.H. (2000), "Considerations on the dynamics of support structures for an offshore wind energy converter", Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands.
  66. Wang, X., Zeng, X., Li, J. and Yang, X. (2018), "Lateral bearing capacity of hybrid monopile-friction wheel foundation for offshore wind turbines by centrifuge modeling", Ocean Eng., 148, 182-192. https://doi.org/10.1016/j.oceaneng.2017.11.036.
  67. Yang, X., Zeng, X., Wang, X. and Yu, H. (2018), "Performance of monopile-friction wheel foundations under lateral loading for offshore wind turbines", Appl. Ocean Res., 78, 14-24. https://doi.org/10.1016/j.apor.2018.06.005.
  68. Yang, Z. (2000), Numerical Modeling of Earthquake Site Response Including Dilation and Liquefaction, Ph.D. Dissertation, Columbia University, New York, U.S.A.
  69. Yang, Z., Elgamal, A. and Parra, E. (2003), "A computational model for cyclic mobility and associated shear deformation", J. Geotech. Geoenviron. Eng., 129(12), 1119-1127. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1119).
  70. Youn, H. and Bouassida, M. (2018), New Prospects in Geotechnical Engineering Aspects of Civil Infrastructures, Sustainable Civil Infrastructures. Springer.
  71. Zaaijer, M.B. (2006), "Foundation modeling to assess dynamic behaviour of offshore wind turbines", Appl. Ocean Res., 28(1), 45-57. https://doi.org/10.1016/j.apor.2006.03.004.
  72. Zhu, B., Byrne, B.W. and Houlsby, G.T. (2013), "Long-term lateral cyclic response of suction caisson foundations in sand", J. Geotech. Geoenviron. Eng., 139(1). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000738.