References
- Adhikari, S. and Bhattacharya, S. (2011), "Vibrations of windturbines considering soil-structure interaction", Wind Struct., 14(2), 85-112. http://dx.doi.org/10.12989/was.2011.14.2.085.
- API (2000), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design, American Petroleum Institute, Washington, U.S.A.
- Arany, L., Bhattacharya, S., Adhikari, S., Hogan, S.J. and MacDonald, J.H.G. (2015), "An analytical model to predict the natural frequency of offshore wind turbines on three-springs flexible foundations using two different beam models", Soil Dyn. Earthq. Eng., 74, 40-45. https://doi.org/10.1016/j.soildryn.2015.03.007.
- Augustesen, A., Sorensen, S., Ibsen, L. and Brodbaek, K. (2000), Comparison of Calculation Approaches for Monopiles for Offshore Wind Turbines, Numer. Meth. Geotech. Eng., CRC Press, 901-906.
- Barari, A. and Ibsen, L.B. (2017), "Insight into the lateral response of offshore shallow foundations", Ocean Eng., 144(1), 203-210. https://doi.org/10.1016/j.oceaneng.2017.08.012.
- Barari, A. and Ibsen, L.B. (2018), "A macro-element approach for non-linear response of offshore skirted footings", In Civil Infrastructures Confronting Severe Weathers and Climate Changes Conference, Springer, Cham. https://doi.org/10.1007/978-3-319-95771-5_11.
- Barari, A., Bagheri, M., Rouainia, M. and Ibsen, L.B. (2017), "Deformation mechanisms of offshore monopile foundations accounting for cyclic mobility effects", Soil Dyn. Earthq. Eng., 97, 439-453. https://doi.org/10.1016/j.soildyn.2017.03.008.
- Barari, A., Bayat, M., Saadati, M., Ibsen, L.B. and Vabbersgaard, L.A. (2015), "Transient analysis of monopile foundations partially embedded in liquefied soil", Geomech. Eng., 8(2), 257-282. https://doi.org/10.12989/gae.2015.8.2.257.
- Bisoi, S. and Haldar, S. (2014), "Dynamic analysis of offshore wind turbine in clay considering soil-monopile-tower interaction", Soil Dyn. Earthq. Eng., 63, 19-35. https://doi.org/10.1016/j.soildyn.2014.03.006.
- Bouzid, D.A., Bhattacharya, S. and Ostmane, L. (2018), "Assessment of natural frequency of installed offshore wind turbines using nonlinear finite element considering soil-monopile interaction", J. Rock Mech. Geotech. Eng., 10, 333-346. https://doi.org/10.1016/j.jrmge.2017.11.010.
- Briaud, J., Smith, T.D. and Meyer, B.J. (1983), "Using the pressuremeter curve to design laterally loaded piles", Proceedings of the Annual Offshore Technology Conference, Houston, Texas, U.S.A., May.
- Carter, J.P. and Kulhawy, F.H. (1992), "Analysis if laterally loaded shafts in rock", J. Geotech. Eng., 118(6), 839-855. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:6(839)
- Chen, R.P., Sun, Y.X., Zhu, B. and Guo, W.D. (2015), "Lateral cyclic pile-soil interaction studies on a rigid model monopile", Proc. Inst. Civ. Eng. Geotech. Eng., 168(GE2),120-130. https://doi.org/10.1680/geng.14.00028.
- Chong, S.H., Shin, H.S. and Cho, G.C. (2019), "Numerical analysis of offshore monopile during repetitive lateral loading", Geomech. Eng., 19(1), 79-91. http://dx.doi.org/10.12989/gae.2019.19.1.079.
- Chopra, A.K. (2007), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Upper Saddle River, New Jersey: Pearson Education Inc.,
- Cuellar, P. (2011), "Pile foundations for offshore wind turbines: Numerical and experimental investigations on the behaviour under short-term and long-term cyclic loading", Ph.D. Dissertation, Technische Universitat Berlin, Berlin, Germany.
- Davisson, M.T. (1970), Lateral Load Capacity of Piles, Highway Research Record, (333).
- DNV (1992), Classification Notes No. 30.4, Foundations, Det Norske Veritas, Oslo, Norway.
- Doherty, P. and Gavin, K. (2012), "Laterally loaded monopile design for offshore wind farms", Proceedings of the Institution of Civil Engineers: Energy, 165(1), 7-17. https://doi.org/10.1680/ener.11.00003.
- Elgamal, A., Lu, J. and Forcellini, D. (2010), "Mitigation of liquefaction-induced lateral deformation in a sloping stratum: Three-dimensional numerical simulation", J. Geotech. Geoenvironment. Eng., 135(11), 1672-1682. https://doi.org/10.1061/(ASCE)GT.1943 5606.0000137.
- Elgamal, A., Yang, Z., Parra, E. and Ragheb, A. (2003), "Modeling of cyclic mobility in saturated cohesionless soils", Int. J. Plast., 19(6), 883-905. https://doi.org/10.1016/S0749-6419(02)00010-4.
- EWEA (2016), The European Offshore Wind Industry-Key Trends and Statistics 2015.
- Festag, G. (2003), Experimentelle und Numerische Untersuchungen zum Verhalten von Granularen Materialien unter Zyklischer Beanspruchung, Master Thesis, Technische Universitat Darmstadt, Darmstadt, Germany,
- Foglia, A. and Ibsen, L.B. (2014). Monopod Bucket Foundation under Cyclic Lateral Loading, DCE Technical Report No. 176, Department of Civil Engineering, Aalborg University.
- Ghasemi, G., Barari, A. and Choobbasti, A.J. (2014), "Seismic analysis of pile-soil interaction in liquefiable soils via gap elements", Advan. Soil Dyn. Found. Eng., 323-332. https://doi.org/10.1061/9780784413425.033.
- Hamre, L., Khankandi, S., Strom, P. and Athanasiu, C. (2010), Lateral Behaviour of Large Diameter Monopiles at Sheringham Shoal Wind Farm, in Frontiers in Offshore Geotechnics II, CRC Press, 575-580
- Helm, J., Laue, J. and Triantafyllidis, T. (2000), "Zur Verformungsentwicklung von Boden unterzyklischer Beanspruchung", Bautechnik, 77(6), 405-415. https://doi.org/10.1002/bate.200003070.
- Hendriyawan, H., Primananda, M.A., Puspita, A.D., Guo, C., Hamdhan, I.N., Tahir, M.M., Pham, B.T., Mu'azu, M.A. and Khorami, M. (2019), "Simplification analysis of suction pile using two dimensions finite element modeling", Geomech. Eng., 17(4), 317-322. https://doi.org/10.12989/gae.2019.17.4.31.
- Hettler, A. (1981), Verschiebungen Starrer und Elastischer Grundungskorper in Sand bei Monotoner und Zyklischer Belastung, Ph.D. Thesis, University of Karlsruhe, Germany.
- Higgins, W. and Basu, D. (2011), Fourier Finite Element Analysis of Laterally Loaded Piles in Elastic Media, Internal Geotechnical Report 2011-1. University of Connecticut, U.S.A. https://doi.org/10.1016/B978-0-12-809451-8.00014-X.
- Ibsen, L.B., Asghari, A., Bagheri, M. and Barari, A. (2014), "Response of monopiles in sand subjected to one-way and transient cyclic lateral loading", Advan. Soil Dyn. Found. Eng.: 312-322.
- Ibsen, L.B., Barari, A. and Larsen, K.A. (2015). "Effect of embedment on the plastic behavior of bucket foundations", J. Waterway, Port, Coastal Ocean Eng., 141(6), 06015005. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000284.
- Ibsen, L.B., Barari, A., Larsen, K.A. (2012), "Modified vertical bearing capacity for circular foundations in sand using reduced friction angle", Ocean Eng., 47, 1-6. https://doi.org/10.1016/j.oceaneng.2012.03.003.
- Jalbi, S., Shadlou, M. and Bhattacharya. (2018), "Impedance functions for rigid skirted caissons supporting offshore wind turbines", Ocean Eng., 150, 21-35. https://doi.org/10.1016/j.oceaneng.2017.12.040.
- Kagawa, T. and Kraft, L.M. (1980), "Lateral load-deflection relationships of piles subjected to dynamic loadings", Soils Found., 20(4), 19-34. https://doi.org/10.3208/sandf1972.20.4_19.
- Kim, G., Kyung, D., Park, D. and Lee, J. (2015), "CPT-based p-y analysis for mono-piles in sands under static and cyclic loading conditions", Geomech. Eng., 9(3), 313-328. https://doi.org/10.12989/gae.2015.9.3.313.
- Klinkvort, R. and Hededal, O. (2014), "Effect of load eccentricity and stress level on monopile support for offshore wind turbines", Canadian Geotech. J., 51(9), 966-974. https://doi.org/10.1139/cgj-2013-0475.
- Klinkvort, R.T., Black, J.A., Bayton, S.M., Haigh, S.K., Madabhushi, G.S.P., Blanc, M., Thorel, L., Zania, V., Bienen, B. and Gaudin, C. (2018), "A review of modelling effects in centrifuge monopile testing in sand", 9th Int. Conference Physical Modeling Geotech., ICPMG, London, United Kingdom.
- Lai, Y., Wang, L., Hong, Y. and He, B. (2020), "Centrifuge modeling of the cyclic lateral behavior of large-diameter behavior of large-diameter monopiles in soft clay: Effects of episodic cycling and reconsolidation", Ocean Eng., 200, 107048. https://doi.org/10.1016/j.oceaneng.2020.107048.
- Larsen, K.A., Ibsen, L.B. and Barari, A. (2013), "Modified expression for the failure criterion of bucket foundations subjected to combined loading", Canadian Geotech. J., 50 (12), 1250-1259. https://doi.org/10.1139/cgj-2012-0308.
- Laszlo, A., Bhattacharya, S., Macdonald, J. and Hogan, S.J. (2017), "Design of monopiles for offshore wind turbines in 10 steps", Soil Dyn. Earthq. Eng., 92, 126-152. https://doi.org/10.1016/j.soildyn.2016.09.024.
- LeBlanc, C., Houlsby, G.T. and Byrne, B.W. (2010), "Response of stiff piles in sand to long-term cyclic lateral loading", Geotechnique, 60(2), 79-90. https://doi.org/10.1680/geot.7.00196.
- Lin, S. and Liao, J. (1999), "Permanent strains of piles in sand due to cyclic lateral loads", J. Geotech. Geoenvironment. Eng., 125(9), 798-802. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(798).
- Little, R.L. and Briaud, J.L. (1988), Full Scale Cyclic Lateral Load Tests on Six Single Piles in Sand, Texas A and M Univ. College Station Dept of Civil Engineering.
- Long, J.H. and Vanneste, G. (1994), "Effects of cyclic lateral loads on piles in sand", J. Geotech. Geoenviron. Eng., 120(1), 225-244. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(225).
- Lopez-Querol, S., Cui, L. and Bhattacharya, S. (2017), "Numerical methods for SSI analysis of offshore wind turbine foundations", Wind Energy Eng., 275-297.
- Madsen, S., Pinna, R., Randolph, M.F. and Andersen, L.V. (2015), "Buckling of monopod bucket foundations - influence of boundary conditions and soil-structure interaction", Wind Struct., 21(6), 641-656. https://doi.org/10.12989/was.2015.21.6.641.
- Muir Wood, D. (2004), Geotechnical Modeling, CRC Press, London, U.K.
- Nielsen, S.D., Ibsen, L.B. and Nielsen, B.N. (2017), "Response of cyclic-loaded bucket foundations in saturated dense sand", J. Geotech. Geoenviron. Eng., 143(11), 04017086. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001787.
- Norris, G.M. (1986), "Theoretically based BEF laterally loaded pile analysis", Proceedings of the 3rd International Conference on Numerical Methods in Offshore Piling, Nantes, France, 361-386.
- Pakar, I. and Bayat, M. (2012a), "Analytical study on the nonlinear vibration of Euler-Bernoulli beams", J. Vibroeng., 14(1), 216-224.
- Pakar, I. and Bayat, M. (2012b), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vibroeng., 14(1), 423-429.
- Parra, E. (1996), "Numerical modeling of liquefaction and lateral ground deformation including cyclic mobility and dilative behaviour in soil systems", Ph.D. Dissertation, Rensselaer Polytechnic Institute, New York, U.S.A.
- Peralta, P. and Achmus, M. (2010), "An experimental investigation of piles in sand subjected to lateral cyclic loads", Proceedings of the 7th International Conference on Physical Modelling in Geotechnics (ICPMG2010), Zurich, Switzerland.
- Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, Wiley, New York, U.S.A.
- Prakash, S. (1962), "Behavior of pile groups subjected to lateral loads", Ph.D. Dissertation, University of Illinois, Urbana, Chicago, U.S.A.
- Prevost, J.H. (1985), "A simple plasticity theory for frictional cohensionless soils", Soil Dyn. Earthq. Eng., 4(1), 9-17. https://doi.org/10.1016/0261-7277(85)90030-0.
- Randolph, M. (1981), "The response of flexible piles to lateral loading", Geotechnique, 31, 247-259. https://doi.org/10.1680/geot.1981.31.2.247.
- Rezania, M., Mousavi Nezhad, M., Zanganeh, H., Castro, J. and Sivasithamparam, N. (2017), "Modeling pile setup in natural clay deposit considering soil anisotropy, structure, and creep effects: Case study", Int. J. Geomech., 17(3), 04016075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000774.
- Rezania, M., Nguyen, H., Zanganeh, H. and Taiebat, M. (2018), "Numerical analysis of Ballina test embankment on a soft structured clay foundation", Comput. Geotech., 93, 61-74. https://doi.org/10.1016/j.compgeo.2017.05.013.
- Rezania, M., Sivasithamparam, N. and Mousavi Nezhad, M. (2014), "On the stress update algorithm of an advanced critical state elasto-plastic model and the effect of yield function equation", Fin. Elements Anal. Des., 90, 74-83. https://doi.org/10.1016/j.finel.2014.06.009.
- Roesen, H.R., Ibsen, L.B. and Andersen, L.V. (2013), "Experimental testing of monopiles in sand subjected to one-way and long-term cyclic lateral loading", Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, September.
- Rosquoet, F., Garnier, J., Thorel, L. and Canepa, Y. (2004), Horizontal Cyclic Loading of Piles Installed in Sand: Study of the Pile Head Displacement and Maximum Bending Moment, in Cyclic behaviour Soils Liquefaction Phenomena, 363-368.
- Truong, P., Lehane, B.M., Zania, V. and Klinkvort, R.T. (2019), "Empirical approach based on centrifuge testing for cyclic deformations of laterally loaded piles in sand", Geotechnique, 69(2), 133-145. https://doi.org/10.1680/jgeot.17.P.203.
- Vught, J.H. (2000), "Considerations on the dynamics of support structures for an offshore wind energy converter", Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands.
- Wang, X., Zeng, X., Li, J. and Yang, X. (2018), "Lateral bearing capacity of hybrid monopile-friction wheel foundation for offshore wind turbines by centrifuge modeling", Ocean Eng., 148, 182-192. https://doi.org/10.1016/j.oceaneng.2017.11.036.
- Yang, X., Zeng, X., Wang, X. and Yu, H. (2018), "Performance of monopile-friction wheel foundations under lateral loading for offshore wind turbines", Appl. Ocean Res., 78, 14-24. https://doi.org/10.1016/j.apor.2018.06.005.
- Yang, Z. (2000), Numerical Modeling of Earthquake Site Response Including Dilation and Liquefaction, Ph.D. Dissertation, Columbia University, New York, U.S.A.
- Yang, Z., Elgamal, A. and Parra, E. (2003), "A computational model for cyclic mobility and associated shear deformation", J. Geotech. Geoenviron. Eng., 129(12), 1119-1127. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1119).
- Youn, H. and Bouassida, M. (2018), New Prospects in Geotechnical Engineering Aspects of Civil Infrastructures, Sustainable Civil Infrastructures. Springer.
- Zaaijer, M.B. (2006), "Foundation modeling to assess dynamic behaviour of offshore wind turbines", Appl. Ocean Res., 28(1), 45-57. https://doi.org/10.1016/j.apor.2006.03.004.
- Zhu, B., Byrne, B.W. and Houlsby, G.T. (2013), "Long-term lateral cyclic response of suction caisson foundations in sand", J. Geotech. Geoenviron. Eng., 139(1). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000738.