DOI QR코드

DOI QR Code

Dispersion of waves characteristics of laminated composite nanoplate

  • Xu, Xinli (Structural Vibration Control Group, Qingdao University of Technology) ;
  • Zhang, Chunwei (Structural Vibration Control Group, Qingdao University of Technology) ;
  • Musharavati, Farayi (Department of Mechanical and Industrial Engineering Qatar University) ;
  • Sebaey, Tamer A. (Engineering Management Department, College of Engineering, Prince Sultan University) ;
  • Khan, Afrasyab (Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University)
  • Received : 2020.09.10
  • Accepted : 2021.05.17
  • Published : 2021.08.10

Abstract

The current work fills a gap of a small-scale study on wave propagation behavior of symmetric, antisymmetric, and quasi-isotropic cross/angle-plies laminated composite nanoplates. The governing equations are derived through the Hamiltonian principle for four-variable refined shear deformation plate theory in conjunction with the assumption of a non-classical theory, and then size-dependent formulations are solved via an analytical solution procedure. This work provides information to accurately analyze the influence of lay-up numbers and sequences, geometry, fiber orientations, and wave numbers on the size-dependent wave propagation response of laminated composite nanoplates.

Keywords

Acknowledgement

This research is financially supported by the Ministry of Science and Technology of China (Grant No. 2019YFE0112400), National Science Foundation of China (Grant No. 51678322), the Taishan Scholar Priority Discipline Talent Group program funded by the Shan Dong Province, and the first-class discipline project funded by the Education Department of Shandong Province.

References

  1. Aghababaei, R. and Reddy, J. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044.
  2. Apuzzo, A., Barretta, R., Fabbrocino, F., Faghidian, S.A., Luciano, R. and Marotti De Sciarra, F. (2019), "Axial and torsional free vibrations of elastic nano-beams by stress-driven two-phase elasticity", J. Appl. Comput. Mech., 5(2), 402-413. 10.22055/JACM.2018.26552.1338.
  3. Arani, A.G. and Jafari, G. (2015), "Nonlinear vibration analysis of laminated composite Mindlin micro/nano-plates resting on orthotropic Pasternak medium using DQM", Appl. Math. Mech., 36(8), 1033-1044. https://doi.org/10.1007/s10483-015-1969-7.
  4. Assadi, A. and Farshi, B. (2011), "Stability analysis of graphene based laminated composite sheets under non-uniform inplane loading by nonlocal elasticity", Appl. Math. Model., 35(9), 4541-4549. https://doi.org/10.1016/j.apm.2011.03.020.
  5. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Strcut. Eng. Mech., 65(4), 453-464. https://doi.org/10.1016/j.apm.2011.03.020.
  6. Bacciocchi, M., Fantuzzi, N. and Ferreira, A. (2020), "Conforming and nonconforming laminated finite element Kirchhoff nanoplates in bending using strain gradient theory", Comput. Struct., 239, 106322. https://doi.org/10.1016/j.compstruc.2020.106322.
  7. Bacciocchi, M., Fantuzzi, N. and Ferreira, A. (2020), "Static finite element analysis of thin laminated strain gradient nanoplates in hygro-thermal environment", Continuum Mech. Thermodynam., 1-24. https://doi.org/10.1007/s00161-020-00940-x
  8. Bacciocchi, M. and Tarantino, A.M. (2021), "Third-Order Theory for the Bending Analysis of Laminated Thin and Thick Plates Including the Strain Gradient Effect", Materials, 14(7), 1771. https://doi.org/10.3390/ma14071771.
  9. Barretta, R., Fabbrocino, F., Luciano, R., De Sciarra, F.M. and Ruta, G. (2020), "Buckling loads of nano-beams in stress-driven nonlocal elasticity", Mech. Adv. Mater. Struct., 27(11), 869-875. https://doi.org/10.1080/15376494.2018.1501523.
  10. Beldjelili, Y., Tounsi, A. and Mahmoud, S. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
  11. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S., Bedia, E. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  12. Chen, C., Wang, X., Wang, Y., Yang, D., Yao, F., Zhang, W., Wang, B., Sewvandi, G.A., Yang, D. and Hu, D. (2020), "Additive Manufacturing of Piezoelectric Materials", Adv. Functional Mater., 30(52), 2005141. https://doi.org/10.1002/adfm.202005141.
  13. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  14. Cornacchia, F., Fabbrocino, F., Fantuzzi, N., Luciano, R. and Penna, R. (2019), "Analytical solution of cross-and angle-ply nano plates with strain gradient theory for linear vibrations and buckling", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2019.1655613.
  15. Cornacchia, F., Fantuzzi, N., Luciano, R. and Penna, R. (2019), "Solution for cross-and angle-ply laminated Kirchhoff nano plates in bending using strain gradient theory", Compos. Part B: Eng., 173, 107006. https://doi.org/10.1016/j.compositesb.2019.107006.
  16. Dehsaraji, M.L., Arefi, M. and Loghman, A. (2020), "Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect", Steel Compos. Struct., 34(5), 657-670. https://doi.org/10.12989/scs.2020.34.5.657.
  17. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069.
  18. Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.
  19. Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sic., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  20. Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda, B. and Mahmoud, S. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/gae.2017.13.3.385.
  21. Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018), "A review on the mechanics of nanostructures", Int. J. Eng. Sci., 133, 231-263. https://doi.org/10.1016/j.ijengsci.2018.09.006.
  22. Fattahi, A., Safaei, B. and Ahmed, N. (2019), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur.Phys. J.Plus. 134(11), 555. https://doi.org/10.1140/epjp/i2019-12912-7.
  23. Fattahi, A., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.
  24. Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory", Steel Compos. Struct., 35(4), 545-554. https://doi.org/10.12989/scs.2020.35.4.545.
  25. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.
  26. Gao, N., Luo, D., Cheng, B. and Hou, H. (2020), "Teaching-learning-based optimization of a composite metastructure in the 0-10 kHz broadband sound absorption range", J. Acoust. Soc. Am., 148(2), 125-129. https://doi.org/10.1121/10.0001678.
  27. Gao, N., Wang, B., Lu, K. and Hou, H. (2021), "Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic black hole phononic structure", Appl. Acoust., 177, 107906. https://doi.org/10.1016/j.apacoust.2020.107906.
  28. Gao, N., Wu, J., Lu, K. and Zhong, H. (2021), "Hybrid composite meta-porous structure for improving and broadening sound absorption", Mech. Syst. Signal Pr., 154, 107504. https://doi.org/10.1016/j.ymssp.2020.107504.
  29. Gao, T., Li, C., Zhang, Y., Yang, M., Jia, D., Jin, T., Hou, Y. and Li, R. (2019), "Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants", Tribology Int., 131, 51-63. https://doi.org/10.1016/j.triboint.2018.10.025.
  30. Ghanati, P. and Safaei, B. (2019), "Elastic buckling analysis of polygonal thin sheets under compression", Indian J. Phys., 93(1), 47-52. https://doi.org/10.1007/s12648-018-1254-9.
  31. Ghayesh, M.H. and Farajpour, A. (2019), "A review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001.
  32. Gibson, R.F. (2016), Principles of composite material mechanics, CRC press.
  33. Gopalakrishnan, S. and Narendar, S. (2013), Wave propagation in nanostructures: nonlocal continuum mechanics formulations, Springer Science & Business Media
  34. Hosseini, M., Hadi, A., Malekshahi, A. and Shishesaz, M. (2018), "A review of size-dependent elasticity for nanostructures", J. Comput. Appl. Mech., 49(1), 197-211. 10.22059/JCAMECH.2018.259334.289.
  35. Karami, B., Gheisari, P., Nazemosadat, S.M.R., Akbari, P., Shahsavari, D. and Naghizadeh, M. (2020), "Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates", Struct. Eng. Mech., 74(6), 809-819. https://doi.org/10.12989/sem.2020.74.6.809.
  36. Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Letters B., 30(36), 1650421. https://doi.org/10.1142/S0217984916504212.
  37. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
  38. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
  39. Karami, B., Shahsavari, D. and Janghorban, M. (2018), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057. https://doi.org/10.1080/15376494.2017.1323143.
  40. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2018), "Wave dispersion of mounted graphene with initial stress", Thin-Wall. Struct., 122, 102-111. https://doi.org/10.1016/j.tws.2017.10.004.
  41. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates", Mater. Res. Express, 6(9), 0950a0959. https://doi.org/10.1088/2053-1591/ab3474.
  42. Karami, B., Shahsavari, D. and Li, L. (2018), "Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimens. Syst. Nanostruct., 97, 317-327. https://doi.org/10.1016/j.physe.2017.11.020.
  43. Karami, B., Shahsavari, D. and Li, L. (2018), "Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Therm. Stresses, 41(4), 483-499. https://doi.org/10.1080/01495739.2017.1393781.
  44. Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel and Composite Structures. 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349
  45. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Walled Structures. 113 162-169. https://doi.org/10.1016/j.tws.2017.01.016
  46. Li, B., Liang, R., Zhou, W., Yin, H., Gao, H. and Cai, K. (2021), "LBS Meets Blockchain: an Efficient Method with Security Preserving Trust in SAGIN", IEEE Internet of Things Journal. 10.1109/JIOT.2021.3064357
  47. Li, H., Tang, J., Kang, Y., Zhao, H., Fang, D., Fang, X., Chen, R. and Wei, Z. (2018), "Optical properties of quasi-type-II structure in GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires", Appl. Phys. Lett., 113(23), 233104. https://doi.org/10.1063/1.5053844.
  48. Li, X., Feng, Y., Liu, B., Yi, D., Yang, X., Zhang, W., Chen, G., Liu, Y. and Bai, P. (2019), "Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding", J. Alloys Compounds, 788, 485-494. https://doi.org/10.1016/j.jallcom.2019.02.223.
  49. Li, Y., Macdonald, D.D., Yang, J., Qiu, J. and Wang, S. (2020), "Point defect model for the corrosion of steels in supercritical water: Part I, film growth kinetics", Corrosion Sci., 163, 108280. https://doi.org/10.1016/j.corsci.2019.108280.
  50. Liu, X., Rao, R., Shi, J., He, J., Zhao, Y., Liu, J. and Du, H. (2021), "Effect of oxygen vacancy and A-site-deficiency on the dielectric performance of BNT-BT-BST relaxors", J. Alloys Compounds, 159999. https://doi.org/10.1016/j.jallcom.2021.159999.
  51. Liu, Z., Wang, C., Zhu, Z., Lou, Q., Shen, C., Chen, Y., Sun, J., Ye, Y., Zang, J. and Dong, L. (2021), "Wafer-scale growth of two-dimensional graphitic carbon nitride films", Matter, https://doi.org/10.1016/j.matt.2021.02.014.
  52. Mahdi, I.E.M. and Suleiman, O.M.E. (2017), "Influence of Fiber Orientation on the Natural Frequencies of Laminated Composite Beams", Int. J. Eng. Res. Adv. Technol., 3. http://dx.doi.org/10.7324/IJERAT.3135
  53. Malekzadeh, P. and Shojaee, M. (2013), "Free vibration of nanoplates based on a nonlocal two-variable refined plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006.
  54. Merdaci, S., Tounsi, A. and Bakora, A. (2016), "A novel four variable refined plate theory for laminated composite plates", Steel Compos. Struct., 22(4), 713-732. https://doi.org/10.12989/scs.2016.22.4.713.
  55. Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2020), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. with Comput., 1-16. https://doi.org/10.1007/s00366-020-01002-1.
  56. Monaco, G.T., Fantuzzi, N., Fabbrocino, F. and Luciano, R. (2021), "Hygro-thermal vibrations and buckling of laminated nanoplates via nonlocal strain gradient theory", Compos. Struct., 262, 113337. https://doi.org/10.1016/j.compstruct.2020.113337.
  57. Moradi-Dastjerdi, R., Behdinan, K., Safaei, B. and Qin, Z. (2020), "Static performance of agglomerated CNT-reinforced porous plates bonded with piezoceramic faces", Int. J. Mech. Sci., 188, 105966. https://doi.org/10.1016/j.ijmecsci.2020.105966.
  58. Oyarhossein, M.A., Alizadeh, A.A., Habibi, M., Makkiabadi, M., Daman, M., Safarpour, H. and Jung, D.W. (2020), "Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes", Scientific Reports, 10(1), 1-19. https://doi.org/10.1038/s41598-020-61855-w.
  59. Papargyri-Beskou, S., Polyzos, D. and Beskos, D. (2009), "Wave dispersion in gradient elastic solids and structures: a unified treatment", Int. J. Solid. Struct., 46(21), 3751-3759. https://doi.org/10.1016/j.ijsolstr.2009.05.002.
  60. Rashidpour, P., Ghadiri, M. and Zajkani, A. (2020), "Low-velocity impact analysis of viscoelastic composite laminated nanoplate based on nonlocal strain gradient theory for different boundary conditions", J. Sandw. Struct. Mater., 1099636220925070.
  61. Reddy, J.N. (2004), Mechanics of laminated composite plates and shells: theory and analysis, CRC press
  62. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete. 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  63. Romano, G. and Barretta, R. (2016), "Comment on the paper "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams" by Meral Tuna & Mesut Kirca", Int. J. Eng. Sci., (109), 240-242. https://doi.org/10.1016/j.ijengsci.2016.09.009.
  64. Safaei, B. (2020), "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.
  65. Safaei, B., Khoda, F.H. and Fattahi, A. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  66. Safarpour, H., Ghanizadeh, S.A. and Habibi, M. (2018), "Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory", Eur. Phys. J. Plus. 133(12), 532. https://doi.org/10.1140/epjp/i2018-12385-2.
  67. Sahla, M., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  68. Sahmani, S. and Safaei, B. (2021), "Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect", Appl. Math. Model., 89, 1792-1813. https://doi.org/10.1016/j.apm.2020.08.039
  69. Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.
  70. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "On buckling analysis of laminated composite plates using a nonlocal refined four-variable model", Steel Compos. Struct., 32(2), 173-187. https://doi.org/10.12989/scs.2019.32.2.173.
  71. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  72. Shahsavari, D., Karami, B. and Li, L. (2018), "Damped vibration of a graphene sheet using a higher-order nonlocal strain-gradient Kirchhoff plate model", Comptes Rendus Mecanique. 346(12), 1216-1232. https://doi.org/10.1016/j.crme.2018.08.011.
  73. Shahsavari, D., Karami, B. and Li, L. (2018), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053.
  74. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  75. Shimpi, R., Arya, H. and Naik, N. (2003), "A higher order displacement model for the plate analysis", J. Reinf. Plast. Comp., 22(18), 1667-1688. https://doi.org/10.1177/073168403027618.
  76. Shiva, K., Raghu, P., Rajagopal, A. and Reddy, J. (2019), "Nonlocal buckling analysis of laminated composite plates considering surface stress effects", Composite Structures. 226 111216. https://doi.org/10.1016/j.compstruct.2019.111216
  77. Sihn, S., Kim, R.Y., Huh, W., Lee, K.-H. and Roy, A.K. (2008), "Improvement of damage resistance in laminated composites with electrospun nano-interlayers", Composites Science and Technology. 68(3-4), 673-683. https://doi.org/10.1016/j.compscitech.2007.09.015
  78. Thai, C.H., Zenkour, A., Wahab, M.A. and Nguyen-Xuan, H. (2016), "A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis", Compos. Struct., 139, 77-95. https://doi.org/10.1016/j.compstruct.2015.11.066.
  79. Thai, H.T., Vo, T.P., Nguyen, T.K. and Kim, S.E. (2017), "A review of continuum mechanics models for size-dependent analysis of beams and plates", Compos. Struct., 177, 196-219. https://doi.org/10.1016/j.compstruct.2017.06.040.
  80. Tocci Monaco, G., Fantuzzi, N., Fabbrocino, F. and Luciano, R. (2021), "Critical Temperatures for Vibrations and Buckling of Magneto-Electro-Elastic Nonlocal Strain Gradient Plates", Nanomater., 11(1), 87. https://doi.org/10.3390/nano11010087.
  81. Tocci Monaco, G., Fantuzzi, N., Fabbrocino, F. and Luciano, R. (2021), "Trigonometric Solution for the Bending Analysis of Magneto-Electro-Elastic Strain Gradient Nonlocal Nanoplates in Hygro-Thermal Environment", Mathematics, 9(5), 567. https://doi.org/10.3390/math9050567.
  82. Toffoli, A., Bitner-Gregersen, E., Osborne, A.R., Serio, M., Monbaliu, J. and Onorato, M. (2011), "Extreme waves in random crossing seas: Laboratory experiments and numerical simulations", Geophys. Res. Lett., 38(6). https://doi.org/10.1029/2011GL046827.
  83. Wang, L., Peng, Y., Xie, Y., Chen, B. and Du, Y. (2021), "A new iteration regularization method for dynamic load identification of stochastic structures", Mech. Syst. Signal Pr., 156, 107586. https://doi.org/10.1016/j.ymssp.2020.107586.
  84. Yan, D., Wang, W. and Chen, Q. (2020), "Fractional-order modeling and nonlinear dynamic analyses of the rotor-bearingseal system", Chaos, Solitons & Fractals, 133, 109640. https://doi.org/10.1016/j.chaos.2020.109640
  85. Yan, X., Huang, X., Chen, Y., Liu, Y., Xia, L., Zhang, T., Lin, H., Jia, D., Zhong, B. and Wen, G. (2021), "A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance", Carbon, 174, 662-672. https://doi.org/10.1016/j.carbon.2020.11.044
  86. Yang, X., Li, Q., Lu, E., Wang, Z., Gong, X., Yu, Z., Guo, Y., Wang, L., Guo, Y. and Zhan, W. (2019), "Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports", Nature Commun., 10(1), 1-9. https://doi.org/10.1038/s41467-019-09662-4
  87. Yang, Y., Chen, H., Zou, X., Shi, X.-L., Liu, W.D., Feng, L., Suo, G., Hou, X., Ye, X. and Zhang, L. (2020), "Flexible carbon-fiber/semimetal Bi nanosheet arrays as separable and recyclable plasmonic photocatalysts and photoelectrocatalysts", ACS Appl. Mater. Interfaces, 12(22), 24845-24854. https://doi.org/10.1021/acsami.0c05695.
  88. Yang, Y., Li, Y., Yao, J., Iglauer, S., Luquot, L., Zhang, K., Sun, H., Zhang, L., Song, W. and Wang, Z. (2020), "Dynamic pore-scale dissolution by CO2-saturated brine in carbonates: Impact of homogeneous versus fractured versus vuggy pore structure", Water Resour. Res., 56(4), e2019WR026112. https://doi.org/10.1029/2019WR026112.
  89. Yuan, H., Wang, Z., Shi, Y. and Hao, J. (2021), "A dissipative structure theory-based investigation of a construction and demolition waste minimization system in China", J. Environ. Planning Management, 1-27. https://doi.org/10.1080/09640568.2021.1889484.
  90. Zeighampour, H., Beni, Y.T. and Karimipour, I. (2017), "Material length scale and nonlocal effects on the wave propagation of composite laminated cylindrical micro/nanoshells", Eur. Phys. J. Plus, 132(12), 503. https://doi.org/10.1140/epjp/i2017-11770-7.
  91. Zhang, B., Niu, Z., Wang, J., Ji, D., Zhou, T., Liu, Y., Feng, Y., Hu, Y., Zhang, J. and Fan, Y. (2020), "Four-hundred gigahertz broadband multi-branch waveguide coupler", IET Microwaves, Antennas & Propagation, 14(11), 1175-1179. 10.1049/ietmap.2020.0090
  92. Zhang, J., Shen, C., Su, H., Arafin, M.T. and Qu, G. (2021), "Voltage Over-scaling-based Lightweight Authentication for IoT Security", IEEE T. Comput., 10.1109/TC.2021.3049543
  93. Zhang, J., Wu, W., Li, C., Yang, M., Zhang, Y., Jia, D., Hou, Y., Li, R., Cao, H. and Ali, H.M. (2020), "Convective Heat Transfer Coefficient Model Under Nanofluid Minimum Quantity Lubrication Coupled with Cryogenic Air Grinding Ti-6Al-4V", Int. J. Precision Eng. Manufact.-Green Technol., 1-23. https://doi.org/10.1007/s40684-020-00268-6.
  94. Zhang, K., Huo, Q., Zhou, Y.Y., Wang, H.H., Li, G.P., Wang, Y.W. and Wang, Y.-Y. (2019), "Textiles/metal-organic frameworks composites as flexible air filters for efficient particulate matter removal", ACS Appl. Mater. Interfaces, 11(19), 17368-17374. https://doi.org/10.1021/acsami.9b01734
  95. Zhang, K., Yang, Z., Mao, X., Chen, X.L., Li, H.H. and Wang, Y.Y. (2020), "Multifunctional Textiles/Metal- Organic Frameworks Composites for Efficient Ultraviolet Radiation Blocking and Noise Reduction", ACS Appl. Mater. Interfaces, 12(49), 55316-55323. https://doi.org/10.1021/acsami.0c18147.
  96. Zhang, Y., Liu, G., Zhang, C., Chi, Q., Zhang, T., Feng, Y., Zhu, K., Zhang, Y., Chen, Q. and Cao, D. (2020), "Low-cost MgFexMn2-xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries", Chem. Eng. J., 392, 123652. https://doi.org/10.1016/j.cej.2019.123652
  97. Zuo, C., Chen, Q., Tian, L., Waller, L. and Asundi, A. (2015), "Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective", Opt. Laser. Eng., 71, 20-32. https://doi.org/10.1016/j.optlaseng.2015.03.006.
  98. Zur, K.K. and Arefi, M. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. https://doi.org/10.12989/scs.2020.34.4.615.

Cited by

  1. Multislice Spiral Computed Tomography Postprocessing Technology in the Imaging Diagnosis of Extremities and Joints vol.2021, 2021, https://doi.org/10.1155/2021/9533573