
Manuscript received July 5, 2021
Manuscript revised July 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.7.41

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

359

Access efficiency of small sized files in Big Data using various
Techniques on Hadoop Distributed File System platform

Neeta Alange1† and Anjali Mathur2††

 neetaalange@gmail.com anjali_mathur@kluniversity.in
Research Scholar Associate Professor,
Department of Computer Science and Engineering,

Koneru Lakshmaiah Education Foundation,
Vaddeswaram, AP, India.

Abstract
In recent years Hadoop usage has been increasing day by day.
The need of development of the technology and its specified
outcomes are eagerly waiting across globe to adopt speedy
access of data. Need of computers and its dependency is
increasing day by day. Big data is exponentially growing as the
entire world is working in online mode. Large amount of data
has been produced which is very difficult to handle and process
within a short time. In present situation industries are widely
using the Hadoop framework to store, process and produce at
the specified time with huge amount of data that has been put
on the server. Processing of this huge amount of data having
small files & its storage optimization is a big problem. HDFS,
Sequence files, HAR, NHAR various techniques have been
already proposed. In this paper we have discussed about
various existing techniques which are developed for accessing
and storing small files efficiently. Out of the various techniques
we have specifically tried to implement the HDFS- HAR,
NHAR techniques.

Key words:
HDFS, Flat Table Technique, Table Chain Technique, Small
File Merging.

1 Introduction to HDFS
In today’s world large amount of data is continuously
emerging out which one has to maintain, store, process
and analyze. Widely used cloud storage platform known
as Hadoop which is open source framework, low cost,
fault tolerance, and scalable system. It is basically used
for primary data storage for all Hadoop applications.
HDFS has master-slave architecture. It has two
components: one name node and few data nodes. Name
node holds metadata of the files. Name node comes into
the picture frequently when client wants to access any
data from the files. When we try to store multiple no. of
small files, performance of HDFS is reduced. In current
scenarios Healthcare centers, scientific fields, Education,
Social Media and Industries produce large number of
small files which are smaller than the HDFS block. Each
file accommodates a separate position. It consumes large
amount of space for storing the metadata in name node
(150 bytes per file). Name node is called repeatedly to
get the Information about files & its corresponding

contents in data node. This entire transaction process
(figure 1) makes the system slow. Various
methodologies are proposed by researchers which are
discussed under literature survey section.

1.1 Hadoop Distributed File System
(HDFS) Architecture

Figure 1: HDFS Architecture

1.2 Features of HDFS:
1. Data Replication
2. Fault Tolerance and Reliability
3. High Reliability
4. Scalability
5. High Throughput

6. Data locality

1.3 Drawbacks of HDFS:
1. Small Files Problem: It is not fit for

small files. HDFS is deficient to support the
random reading of files due to its high
capacity design. Small files are smaller than
the HDFS block size, default size is 128 MB.
If we try to store this huge number of small
files, HDFS cannot handle these lots of

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

360

small files. If there are many small files, the
name node will be overloaded since it stores
the metadata of HDFS [9].

2. File Access Efficiency: If the client
wants to access or read the contents of the
file which is stored in HDFS directly. Then
following steps are followed by the client.
Client sends a requests (along with file path)
to the name node. The name node searches
the file metadata which is located in its main
memory. The name node responds to the
client with its metadata. The metadata
consists of the files block and its location
which are stored in a data node to read the
block contents. Client sends the request to
the data node to read the contents. The data
node returns the result containing the block
content to the client [9].

3. No Caching: Hadoop is inefficient for
caching. MapReduce cannot cache the
intermediate data in memory for further
requirement and this reduces the Hadoop
performance [9].

4. Network Transfers are more:

Complete Blocks are transferred for client
requests [9].

5. Slow Processing: MapReduce is
responsible for processing a large amount of
data. It breaks the processing into 2 phases
Map & Reduce. It is a time consuming to
perform these tasks by increasing the latency
which reduces processing speed [9].

2 Literature Survey:

2.1 HAR (Hadoop Archives)

HAR files are introduced for reducing the
problem of multiple files which are putting
pressure on the name nodes memory. A layered
file system has been put on the HDFS. HAR
files are created using Hadoop archive
command. Reading through files in a HAR is
not more efficient than reading through files in
Hadoop. Each HAR file access requires two
index files read as well as the data file to read,
this makes the process slower[1][2].
HAR is implemented using the Flat Table
Technique which is explained in next Section.

Figure 2: Flat Table Technique

2.1.1 Methodology:
In this method all file’s metadata is stored in a
single file, this file is called File Table.
Another file is used to store actual contents of
files, this file is called Container File. Both
these files are stored on HDFS. File table
contains metadata of a file such as filename,
offset, and length. When a new file is created,
its data is appended in container file and its
offset in container file, length and name are
added to file table. When a client requests a
file, its metadata is retrieved from file table,
which contains file’s offset and length. Then
from container file the block at offset and
length is retrieved and sent back to client. As
HDFS doesn’t support updating file contents,
but it allows to append contents to existing
files. So, we can only add new files to file
table but cannot update or delete existing files.

2.1.2 Algorithm:
globals:
indextable
containerfile
function add_file(filename, content)
location=append_content(containerfile, content)
add_file_entry(indexfile, filename, location,
len(content))
function get_file(filename)
 location, length = find_file(indexfile, filename)
data = read_content(containerfile, location, length)
return data

2.1.3 Characteristics:
1. It requires only one container to store all the

files.
2. It follows Write Once methodology.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

361

2.1.4 Advantages:
1. Flat File techniques reduce store wastage for

small files.

2.1.5 Disadvantages:
1. Time required is more.
2. It follows Write Once Read Many

methodology.

2.2 New HAR (NHAR)
To process the large amount of small sized files

it requires more time for name nodes. The time required
to access such kind of files needs to be reduced actually.
The new system called NHAR [9] [11] is dependent on
HAR of Apache Hadoop. NHAR is implemented by
using table chain technique which is explained below.

Figure 3: Table Chain Technique

2.2.1 Methodology:
In this method all file’s metadata is stored in a
single file, this file is called File Table. This
file contains linked list of tables, forming a
table chain. Another file is used to store actual
contents of files, this file is called Container
File. Both these files are stored on HDFS. File
table contains metadata of a file such as
filename, offset, and length.
On startup the file table is loaded in memory.
First the latest file table is located in file table
and its contents are added to in-memory file
table, then previous file table is located and
the process continued until first file table is
reached. While doing this is a file’s metadata
is already found in in-memory file table then
that entry is discarded (as it has become old
due to updating or deletion of file).

In every run, a new in-memory file table is
created to track new or updated files. In
runtime all metadata create and update
operations are performed on this in-memory
file table. Actual contents of the files are
appended in container file. On shutdown, the
contents of in-memory file table are appended
to file table in HDFS. This creates a chain of
file tables which makes it possible to update
and delete files.

2.2.2 Algorithm:

globals:
 indexfile
 containerfile
 filetable
 newfiletable

function intialize()
 file_index_location=get_last_index(indexfile)
 while file_index_location != NULL
 indices=read_index(file_index_location)
 filetable = filetable ∪ (indices - (filetable ∩ indices))

file_index_location=get_prev_index(file_index_location)

function add_file(filename, content)
 location=append_content(containerfile, content)
 add_file_entry(newfiletable, filename, location,
len(content))

function get_file(filename)
 location, length = find_file(newfiletable, filetable,
filename)
 data = read_content(containerfile, location, length)
 return data

function close()
 last_index=get_last_index(indexfile)
 append_entry_table(indexfile, newfiletable)
 append_prev_index(last_index)

2.2.3 Characteristics:
1. It requires only one container to store all the files.
2. It requires a single file table to keep all the records of
files. Here containers are responsible for storing the
actual contents of the file.

2.2.4 Advantages:
1. File Table is Updatable.
2. Time required is less compared to Flat Table
Technique.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

362

2.2.5 Disadvantages:
1. Uses single container for all categories.
2. Uses more memory to store file table.

2.3 Spatiotemporal Small File Merging
Strategy

In the existing work Lion Xiong et al. [1] have used
usage pattern of small files for selecting candidate files
for merging in a single container.
For usage pattern analysis they’ve used time stamp of
file access, and grouped files with sequential time stamps
and calculated support file each file group. The file
group having large support value is stored in single
container.

2.3.1 Advantages:
1. Files which are accessed sequentially are stored in
same container.

2.3.2 Disadvantages:
1. This solution provides no caching, this will increase
access time.
2. This process needs to be done periodically, which is a
time expensive process.

3 Experimental Setup:
To implement these algorithms we have used the
following platforms.
Experimental test is performed on a single node.

Table 1: Experimental Setup
Sr.
No.

Parameters Description

1
No. of Nodes Single Node (Acts as both

master & Slave)

2
Node

Configuration
Intel(R) Core(TM) i5-5500U

CPU @ 2.20GHz
3 RAM 16 GB
4 Hard Disk 500GB
5 Operating System Fedora 32.0

6
Execution
Platform

jdk 1.8.0

7 Hadoop Version 3.2.0

8
Development

Tool
NetBeans 12.0

9 Dataset
Reuter’s containing TEXT

files

10
Number of Files

considered
2138

11
File Size Range Average From 1 KB to 100

KB
12 No. of Iterations 1000

4 Results:
Table 2: Memory & Time Requirement for Flat Table

Technique
For 1000
Iterations

Flat Table

Average
File Size

Memory (in
MB)

Time (in
Sec.)

1K 16.2 56
5K 16.5 58
10K 17.1 64
50K 19.3 71

100K 27.4 97

Figure 4: Flat Table Technique Memory & Time Requirement

Figure 4 shows that the memory & Time required for the
Flat Table Technique.

Table 3: Memory & Time Requirement for Table Chain

Technique
For 1000
Iterations

Table Chain

Average
File Size

Memory (in
MB)

Time (in
Sec.)

1K 19 45
5K 19.1 45

10K 21.2 48
50K 23.1 57
100K 35.8 70

0

20

40

60

80

100

1K 5K 10K 50K 100K

Flat Table Technique Memory & Time
Requirement

Flat Table Memory (in MB)
Flat Table Time (in Sec.)

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

363

Figure 5: Table Chain Technique Memory & Time

Requirement

Figure 5 shows that the memory & Time required for the
Table Chain Technique.

Comparative Chart for the Flat Table & Table Chain

Technique in terms of Memory & Time.

Table 4: Memory Requirement

For 1000
Iterations

Flat Table
Memory
 (in MB)

Table Chain
Memory
(in MB) Average

File Size

 1K 16.2 19

5K 16.5 19.1

10K 17.1 21.2

50K 19.3 23.1

100K 27.4 35.8

Figure 6: Memory Requirement for Flat Table & Table Chain

Technique.

Table 5: Time Requirement

For 1000 Iterations Flat Table
Access Time

(in Sec.)

Table Chain
Access Time

(in Sec.)

Average
File Size

1K 56 45

5K 58 45

10K 64 48

50K 71 57

100K 97 70

Figure 7: Time Requirement for Flat Table & Table Chain

Technique.

Conclusion:
As per the experimental readings it is observed that
Table Chain Technique requires more memory in
comparison with Flat Table Technique. As well as the
access time requirement is lesser in Table Chain
Technique compared to Flat Table Technique. From this
implementation the observation and result indicates that
a new technique needs to be implemented to have the
better access efficiency of small sized files.

0

20

40

60

80

1K 5K 10K 50K 100K

Table Chain Technique Memory &

Time Requirement

Memory (in MB) Time (in Sec.)

16.2 16.5 17.1 19.3

27.4

19 19.1 21.2 23.1

35.8

0

10

20

30

40

1K 5K 10K 50K 100K

M
em

o
ry
 R
eq

u
ir
ed

 in
 M

B

File Size

Memory Requirement

Flat Table Table Chain

0

20

40

60

80

100

1K 5K 10K 50K 100K

Ti
m
e
in
 S
ec
o
n
d
s

File Size

Time Requirement

Flat Table Access Time (in Sec.)

Table Chain Access Time (in Sec.)

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

364

References:
[1] Lian Xiong et al. “A Small File Merging Strategy

for Spatiotemporal Data in Smart Health”,
IEEEAccess Special Section on Advanced
Information Sensing and Learning Technologies for
Data-Centric Smart Health Applications, Volume 7,
2019.

[2] Neeta Alange, Anjali Mathur, “Small Sized File
Storage Problems in Hadoop Distributed File
System”, 2nd International conference on Smart
Systems and Inventive Technology (ICSSIT 2019)
vol. pp. 1198-1202, November 2019 proceedings
published in IEEE Digital Xplore

[3] D Sethia et al “Optimized MapFile Based Storage
of Small Files in Hadoop” 17th IEEE /ACM
International Symposium on Cluster, Cloud and
Grid Computing, 2017, pp 906-912.

[4] Bing et al “A Novel Approach for Efficient
Accessing of Small files in HDFS:TLB-MapFile”
2016 17th IEEE/ACIS International Conference on
Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing
(SNPD).

[5] Alam et al. "Hadoop Architecture and its issues."
International Conference on Computational Science
and Computational Intelligence (CSCI), 2014 Vol.
2. IEEE, 2014.

[6] Ankita et al “A Novel Approach for Efficient
Handling of Small Files in HDFS”, IEEE
International Advance Computing Conference
(IACC, 2015), pp.1258-1262.

[7] Nivedita et. al “Optimization of Hadoop Small File
Storage using Priority Model”, 2nd IEEE
International Conference On Recent Trends in
Electronics Information & Communication
Technology (RTEICT), pp. 1785-1789, May 2017.

[8] Parth et al “A Novel Approach to Improve the
Performance of Hadoop in Handling of small files”
2015 IEEE International Conference on Electrical,
Computer and Communication Technologies
(ICECCT), 5-7 March 2015

[9] Online Reference Apache Hadoop,
http://hadoop.apache.org/

[10] https://data-flair.training/blogs/13-limitations-of-
hadoop/

[11] Shubham et. al “An approach to solve a Small File
problem in Hadoop by using Dynamic Merging and
Indexing Scheme”, International Journal on Recent
and Innovation Trends in Computing and
Communication [IJRITCC], November 2016,
Volume: 4, Issue:11.

[12] Awais et al “Performance Efficiency in Hadoop for
Storing and Accessing Small Files” 7th
International Conference on Innovative Computing
Technology (INTECH 2017), pp.211-216.

[13] Online Reference
https://blog.cloudera.com/blog/2009/02/the-small-
files-problem/

[14] Online Reference https://aws.amazon.com/s3/
[15] Zhipeng et al “An Effective Merge Strategy Based

Hierarchy For Improving Small File Problem on
HDFS” IEEE Proceedings of CCIS2016, pp. 327-
331.

[16] Chatuporn et al “Improving the Performance of
Small-File Accessing in Hadoop” 11th International
Joint Conference on Computer Science and
Software Engineering (JCSSE, 2014), pp.200-205.

[17] Priyanka et al "An Innovative Strategy for
Improved Processing of Small Files in Hadoop",
International Journal of Application or Innovation
in Engineering & Management (IJAIEM) , Volume
3, Issue 7, July 2014 , pp. 278-280 , ISSN 2319 -
4847

[18] Yonghua et al “SFS: A Massive small file
processing middleware in Hadoop” IEICE, 18th
Asia-Pacific Network Operations and Management
Symposium (APNOMS) 2016.

[19] Kashmira et al , “Efficient Way for handling Small
Files sing Extended HDFS” International Journal of
Computer Science and Mobile Computing, Vol.3
Issue.6, June- 2014, pg. 785-789.

[20] Bo Dong et al “An Optimized Approach for Storing
and Accessing Small Files on Cloud Storage”.
Journal of Network and Computer Applications 35
(2012) 1847–1862.

[21] Kun et al “MOSM: An Approach for Efficient
String Massive Small Files on Hadoop” 2017 IEEE
2nd International Conference on Big Data
Analysis(ICBDA), 2017

[22] Z. Gao et al “An effective merge strategy based
hierarchy for improving small file problem on
HDFS”, in proceedings of 2016 4th IEEE
International Conference on Cloud Computing and
Intelligence Systems, CCIS 2016, 2016, pp. 327-
331.

[23] Sachin et al “Dealing with small files problem in
hadoop distributed file system”, Procedia Computer
Science Volume 79, 2016, Pages 1001-1012

[24] Tanvi et al “An extended HDFS with an AVATAR
Node to handle both small files and to eliminate
single point of failure” 2015 International
Conference on Soft Computing Techniques and
Implementations (ICSCTI), 8-10 Oct. 2015

[25] Passent et al “HDFSX:Big Data Distributed File
System with Small Files Support” 2016 12th
International Computer Engineering Conference
(ICENCO), 28-29 Dec. 2016, pp-131-135

[26] Online Reference
https://blog.cloudera.com/blog/2009/02/the-small-
files-problem/.

