DOI QR코드

DOI QR Code

Microbial Community Dysbiosis and Functional Gene Content Changes in Apple Flowers due to Fire Blight

  • Kong, Hyun Gi (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ham, Hyeonheui (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Mi-Hyun (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, Dong Suk (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Yong Hwan (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2021.05.06
  • Accepted : 2021.06.06
  • Published : 2021.08.01

Abstract

Despite the plant microbiota plays an important role in plant health, little is known about the potential interactions of the flower microbiota with pathogens. In this study, we investigated the microbial community of apple blossoms when infected with Erwinia amylovora. The long-read sequencing technology, which significantly increased the genome sequence resolution, thus enabling the characterization of fire blight-induced changes in the flower microbial community. Each sample showed a unique microbial community at the species level. Pantoea agglomerans and P. allii were the most predominant bacteria in healthy flowers, whereas E. amylovora comprised more than 90% of the microbial population in diseased flowers. Furthermore, gene function analysis revealed that glucose and xylose metabolism were enriched in diseased flowers. Overall, our results showed that the microbiome of apple blossoms is rich in specific bacteria, and the nutritional composition of flowers is important for the incidence and spread of bacterial disease.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ014934)" from Rural Development Administration, Republic of Korea.

References

  1. Anderson, M. J., Ellingsen, K. E. and McArdle, B. H. 2006. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9:683-693. https://doi.org/10.1111/j.1461-0248.2006.00926.x
  2. Barriuso, J., Valverde, J. R. and Mellado, R. P. 2011. Estimation of bacterial diversity using next generation sequencing of 16S rDNA: a comparison of different workflows. BMC Bioinformatics 12:473. https://doi.org/10.1186/1471-2105-12-473
  3. Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodriguez, A. M., Chase, J., Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C., Douglas, G. M., Durall, D. M., Duvallet, C., Edwardson, C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M., Gibbons, S. M., Gibson, D. L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G. A., Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B. D., Kang, K. B., Keefe, C. R., Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M. G. I., Lee, J., Ley, R., Liu, Y. X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B. D., McDonald, D., McIver, L. J., Melnik, A. V., Metcalf, J. L., Morgan, S. C., Morton, J. T., Naimey, A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S. B., Pearson, T., Peoples, S. L., Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A., Robeson, M. S. 2nd, Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S. J., Spear, J. R., Swafford, A. D., Thompson, L. R., Torres, P. J., Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-Hasan, S., van der Hooft, J. J. J., Vargas, F., Vazquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K. C., Williamson, C. H. D., Willis, A. D., Xu, Z. Z., Zaneveld, J. R., Zhang, Y., Zhu, Q., Knight, R. and Caporaso, J. G. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37:852-857. https://doi.org/10.1038/s41587-019-0209-9
  4. Borghi, M. and Fernie, A. R. 2017. Floral metabolism of sugars and amino acids: implications for pollinators' preferences and seed and fruit set. Plant Physiol. 175:1510-1524. https://doi.org/10.1104/pp.17.01164
  5. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., John-son, A. J. and Holmes, S. P. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13:581-583. https://doi.org/10.1038/nmeth.3869
  6. Cellini, A., Buriani, G., Rocchi, L., Rondelli, E., Savioli, S., Rodriguez Estrada, M. T., Cristescu, S. M., Costa, G. and Spinelli, F. 2018. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora. Mol. Plant Pathol. 19:158-168. https://doi.org/10.1111/mpp.12509
  7. Chen, T., Nomura, K., Wang, X., Sohrabi, R., Xu, J., Yao, L., Paasch, B. C., Ma, L., Kremer, J., Cheng, Y., Zhang, L., Wang, N., Wang, E., Xin, X.-F. and He, S. Y. 2020. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580:653-657. https://doi.org/10.1038/s41586-020-2185-0
  8. Chiou, C.-S. and Jones, A. L. 1993. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J. Bacteriol. 175:732-740. https://doi.org/10.1128/jb.175.3.732-740.1993
  9. Cui, Z., Huntley, R. B., Zeng, Q. and Steven, B. 2021. Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora. ISME J. 15:318-329. https://doi.org/10.1038/s41396-020-00784-y
  10. D'Amore, R., Ijaz, U. Z., Schirmer, M., Kenny, J. G., Gregory, R., Darby, A. C., Shakya, M., Podar, M., Quince, C. and Hall, N. 2016. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genomics 17:55. https://doi.org/10.1186/s12864-015-2194-9
  11. Denning, W. 1794. On the decay of apple trees. In: Transactions of the Society for the Promotion of Agriculture, Arts and Manufactures, instituted in the State of New York, ed. by Society for the Promotion of Agriculture, Arts, and Manufactures, pp. 219-222. Childs and Swaine, New York, NY, USA.
  12. Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C. and Langille, M. 2020. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38:685-688. https://doi.org/10.1038/s41587-020-0548-6
  13. Effantin, G., Rivasseau, C., Gromova, M., Bligny, R. and Hugouvieux-Cotte-Pattat, N. 2011. Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium. Mol. Microbiol. 82:988-997. https://doi.org/10.1111/j.1365-2958.2011.07881.x
  14. Griffith, C. S., Sutton, T. B. and Peterson, P. D. 2003. Fire blight: the foundation of phytobacteriology. APS Press, St. Paul, MN, USA. 144 pp.
  15. Hacquard, S., Spaepen, S., Garrido-Oter, R. and Schulze-Lefert, P. 2017. interplay between innate immunity and the plant microbiota. Annu. Rev. Phytopathol. 55:565-589. https://doi.org/10.1146/annurev-phyto-080516-035623
  16. Hauben, L. and Swings, J. 2005. Genus XIII. Erwinia. In: Bergey's manual of systematic bacteriology. Vol. 2. The proteobacteria. 2nd ed., eds. by D. J. Brenner, N. R. Krieg, J. T. Staley and G. M. Garrity, pp. 670-679. Springer, New York, NY, USA.
  17. Johnson, K. B. and Stockwell, V. O. 1998. Management of fire blight: a case study in microbial ecology. Annu. Rev. Phytopathol. 36:227-248. https://doi.org/10.1146/annurev.phyto.36.1.227
  18. Longstroth, M. 2001. The 2000 fire blight epidemic in southwest Michigan apple orchards. Compact Fruit Tree 34:16-19.
  19. Norelli, J. L., Jones, A. L. and Aldwinckle, H. S. 2003. Fire blight management in the twenty-first century: using new technologies that enhance host resistance in apple. Plant Dis. 87:756-765. https://doi.org/10.1094/PDIS.2003.87.7.756
  20. Pique, N., Minana-Galbis, D., Merino, S. and Tomas, J. M. 2015. Virulence factors of Erwinia amylovora: a review. Int. J. Mol. Sci. 16:12836-12854. https://doi.org/10.3390/ijms160612836
  21. Pusey, P. L. 1999. Effect of nectar on microbial antagonists evaluated for use in control of fire blight of pome fruits. Phytopathology 89:39-46. https://doi.org/10.1094/PHYTO.1999.89.1.39
  22. Pusey, P. L., Stockwell, V. O. and Mazzola, M. 2009. Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Phytopathology 99:571-581. https://doi.org/10.1094/PHYTO-99-5-0571
  23. Schloss, P. D. 2010. The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies. PLoS Comput. Biol. 6:e1000844. https://doi.org/10.1371/journal.pcbi.1000844
  24. Shade, A., McManus, P. S. and Handelsman, J. 2013. Unexpected diversity during community succession in the apple flower microbiome. mBio 4:e00602-12.
  25. Singer, E., Bushnell, B., Coleman-Derr, D., Bowman, B., Bowers, R. M., Levy, A., Gies, E. A., Cheng, J.-F., Copeland, A., Klenk, H.-P., Hallam, S. J., Hugenholtz, P., Tringe, S. G. and Woyke, T. 2016. High-resolution phylogenetic microbial community profiling. ISME J. 10:2020-2032. https://doi.org/10.1038/ismej.2015.249
  26. Spinelli, F., Ciampolini, F., Cresti, M., Geider, K. and Costa, G. 2005. Influence of stigmatic morphology on flower colonization by Erwinia amylovora and Pantoea agglomerans. Eur. J. Plant Pathol. 113:395-405. https://doi.org/10.1007/s10658-005-4511-7
  27. Steven, B., Huntley, R. B. and Zeng, Q. 2018. The influence of flower anatomy and apple cultivar on the apple flower phytobiome. Phytobiomes 2:171-179. https://doi.org/10.1094/PBIOMES-03-18-0015-R
  28. Stockwell, V. O., Johnson, K. B., Loper, J. E., Lindow, S. E., Hecht-Poinar, E. I. and Elliott, V. J. 2002. Biological control of fire blight: understanding interaction among introduced and indigenous microbial communities. In: Phyhllosphere micrbiology, eds. by S. E. Lindow, E. I. Hecht-Poinar, and V. J. Elliot, pp. 225-239. APS Press, St. Paul, MN, USA.
  29. Sundin, G. W. and Bender, C. L. 1995. Expression of the strAstrB streptomycin resistance genes in Pseudomonas syringae and Xanthomonas campestris and characterization of IS6100 in X. campestris. Appl. Environ. Microbiol. 61:2891-2897. https://doi.org/10.1128/aem.61.8.2891-2897.1995
  30. Teeling, H. and Glockner, F. O. 2012. Current opportunities and challenges in microbial metagenome analysis--a bioinformatic perspective. Brief. Bioinform. 13:728-742. https://doi.org/10.1093/bib/bbs039
  31. Terlizzi, A., Anderson, M. J., Bevilacqua, S., Fraschetti, S., Wlodarska-Kowalczuk, M. and Ellingsen, K. E. 2009. Beta diversity and taxonomic sufficiency: do higher-level taxa reflect heterogeneity in species composition? Divers. Distrib. 15:450-458. https://doi.org/10.1111/j.1472-4642.2008.00551.x
  32. Thomson, S. 2000. Epidemiology of fire blight. In: Fire blight: the disease and its causative agent, Erwinia amylovora, ed. by J. L. Vanneste, pp. 9-36. CABI Publishing, Wallingford, UK.
  33. Van der Zwet, T. 2002. Present worldwide distribution of fire blight. Acta Hortic. 590:33-34. https://doi.org/10.17660/ActaHortic.2002.590.1
  34. Van der Zwet, T. 2006. Present worldwide distribution of fire blight and closely related diseases. Acta. Hortic. 704:35-36. https://doi.org/10.17660/ActaHortic.2006.704.1
  35. Van der Zwet, T., Zoller, B. G. and Thomson, S. V. 1988. Controlling fire blight of pear and apple by accurate prediction of the blossom blight phase. Plant Dis. 72:464-472. https://doi.org/10.1094/PD-72-0464
  36. Vanneste, J. L. 2000. What is fire blight? Who is Erwinia amylovora? How to control it? In: Fire blight: the disease and its causative agent, Erwinia amylovora, ed. by J. L. Vanneste, pp. 1-6. CABI Publishing, Wallingford, UK.
  37. Vannette, R. L. 2020. The floral microbiome: plant, pollinator, and microbial perspectives. Annu. Rev. Ecol. Evol. Syst. 51:363-386. https://doi.org/10.1146/annurev-ecolsys-011720-013401
  38. Venkataraman, A., Rosenbaum, M. A., Werner, J. J., Winans, S. C. and Angenent, L. T. 2014. Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa. ISME J. 8:1210-1220. https://doi.org/10.1038/ismej.2013.232
  39. Vrancken, K., Holtappels, M., Schoofs, H., Deckers, T. and Valcke, R. 2013. Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: state of the art. Microbiology 159:823-832. https://doi.org/10.1099/mic.0.064881-0
  40. Wagner, J., Coupland, P., Browne, H. P., Lawley, T. D., Francis, S. C. and Parkhill, J. 2016. Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbiol. 16:274. https://doi.org/10.1186/s12866-016-0891-4
  41. Wang, J. and Jia, H. 2016. Metagenome-wide association studies: fine-mining the microbiome. Nat. Rev. Microbiol. 14:508-522. https://doi.org/10.1038/nrmicro.2016.83
  42. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221-271. https://doi.org/10.1128/mr.51.2.221-271.1987
  43. Woese, C. R. and Fox, G. E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. U. S. A. 74:5088-5090. https://doi.org/10.1073/pnas.74.11.5088