DOI QR코드

DOI QR Code

Evaluating the Efficiency of Chinese Ports from the Perspective of Maritime Silk Road

중국 일대일로 항만의 효율성 평가

  • 왕관 (인천대학교 동북아물류대학원) ;
  • 안승범 (인천대학교 동북아물류대학원)
  • Received : 2020.12.11
  • Accepted : 2021.03.29
  • Published : 2021.03.31

Abstract

The 21st Century Maritime Silk Road (MSR) is an important part of Belt and Road Initiative(BRI). As an economic and trade corridor for dozens of countries in Asia, Europe and Africa, and the port as an important link node, the efficiency of port operation directly affects the implementation of BRI's strategy. On the basis of combining BRI and related evaluation methods of port efficiency, this paper uses DEA-BCC model to select port production berth number and production berth length as input index container throughput and cargo throughput as output index to analyze the port efficiency of 14 ports in China. The results show that: (1) The overall efficiency level of the ports along the MSR is relatively low. Most of the ports have not reached the DEA efficiency and there are different degrees of problems in scale investment and technological improvement. However, this situation is accompanied by the implementation of China's maritime cooperation strategy and becoming better year by year. (2) The low operating efficiency of ports along China's MSR is mainly due to the lack of coordination between scale efficiency and technical efficiency, which is caused by insufficient scale investment in the port itself, weak economic linkage between the hinterland and the port, (3) Whether a port has a strong comprehensive strength does not entirely depend on the cargo throughput or scale but also includes the port's operating efficiency.

21 세기 해양 실크로드 (MSR)는 일대일로 이니셔티브 (BRI)의 핵심적인 부분이다. 아시아, 유럽, 아프리카 등 수십 개 국가의 경제 및 무역 통로이자 중요한 연결 노드인 항만과 항만 운영의 효율성은 BRI의 전략 실행에 직접적인 영향을 미친다. 본 논문에서는 BRI 및 관련 항만 효율 평가 방법을 결합한 DEA-BCC 모델을 사용하여 항만 생산 선석 수와 생산 선석 길이를 입력 지표 컨테이너 처리량으로, 화물 처리량을 출력 지표로 선택하여 14 개 항만의 항만 효율성을 분석하였다. 결과는 다음으로 요약된다 : (1) MSR을 따라 항만의 전반적인 효율성 수준이 낮게 나타난다. 대부분의 항만은 DEA 효율성에 도달하지 못하였고 투자규모 및 기술 개선에 있어 상이한 문제를 보여준다. 하지만 이러한 상황은 중국의 해양 협력 전략의 실행과 함께 해마다 개선되고 있다. (2) MSR 항만의 낮은 운영 효율성은 주로 규모 효율성과 기술 효율성 간의 조정 부족 때문으로 볼 수 있다. 이는 항만 자체에 대한 투자규모가 불충분하고 배후지와 항만 간의 유기적인 연계가 취약하기 때문이다. (3) 항만이 종합적인 경쟁력 확보 여부는 화물 처리량이나 규모에 전적으로 의존하지 않고 항만 운영 효율성도 포함되어 역할을 하는 것으로 파악된다

Keywords

Acknowledgement

이 논문은 해양수산부 2020년도 해운항만물류 전문인력양성사업 지원에 의해 연구되었음

References

  1. Al-Eraqi, A. S., Mustafa, A., & Khader, A. T. (2010). An extended DEA windows analysis: Middle East and East African seaports. Journal of Economic Studies.
  2. Bendall, H. B., & Stent, A. F. (2001). A scheduling model for a high speed containership service: A hub and spoke short-sea application. International Journal of Maritime Economics, 3(3), 262-277. https://doi.org/10.1057/palgrave/ijme/9100018
  3. Clark, T. N. (Ed.). (2004). The city as an entertainment machine. Boston, MA: Elsevier/JAI.
  4. Chinese Ports Yearbook; National Bureau of Statistics of China: Beijing, China, 2018.
  5. Coto-Millan, P., Banos-Pino, J., & Rodriguez-Alvarez, A. (2000). Economic efficiency in Spanish ports: some empirical evidence. Maritime Policy & Management, 27(2), 169-174. https://doi.org/10.1080/030888300286581
  6. Coto-Millan, P., Fernandez, X. L., Hidalgo, S., & Pesquera, M. A. (2016). Public regulation and technical efficiency in the Spanish Port Authorities: 1986-2012. Transport Policy, 47, 139-148. https://doi.org/10.1016/j.tranpol.2016.01.006
  7. Cullinane, K., Song, D. W., & Wang, T. (2005). The application of mathematical programming approaches to estimating container port production efficiency. Journal of productivity analysis, 24(1), 73-92. https://doi.org/10.1007/s11123-005-3041-9
  8. Chudasama, Y., Wright, K. S., & Murray, E. A. (2008). Hippocampal lesions in rhesus monkeys disrupt emotional responses but not reinforcer devaluation effects. Biological psychiatry, 63(11), 1084-1091. https://doi.org/10.1016/j.biopsych.2007.11.012
  9. Chames, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8
  10. Chen, C., & Lam, J. S. L. (2018). Sustainability and interactivity between cities and ports: A two-stage data envelopment analysis (DEA) approach. Maritime Policy & Management, 45(7), 944-961. https://doi.org/10.1080/03088839.2018.1450528
  11. Cullinane, K., D. W. Song, and R. Gray. 2002. "A Stochastic Frontier Model of the Efficiency of Major Container Terminals in Asia: Assessing the Influence of Administrative and Ownership Structures." Transportation Research Part A: Policy and Practice 36 (8): 743-762. https://doi.org/10.1016/S0965-8564(01)00035-0
  12. Lin, Y., Yan, L., & Wang, Y. M. (2019). Performance evaluation and investment analysis for container port sustainable development in china: An inverse DEA approach. Sustainability, 11(17), 4617. https://doi.org/10.3390/su11174617
  13. Liu, Q. (2010). Efficiency analysis of container ports and terminals (Doctoral dissertation, UCL (University College London).
  14. National Development and Reform Commission, Ministry of Foreign Affairs, and Ministry of Commerce of the People's Republic of China. 2015. "Vison and Actions on Jointly Building Silk Road Economic Belt and 21-Century Maritime Silk Road." Beijing: http://www.china.org.cn/chinese/2015-09/15/content_36591064.htm
  15. Notteboom, T., Coeck, C., & Van Den Broeck, J. (2000). Measuring and explaining the relative efficiency of container terminals by means of Bayesian stochastic frontier models. International journal of maritime economics, 2(2), 83-106. https://doi.org/10.1057/ijme.2000.9
  16. Roll, Y., & Hayuth, Yehuda (1993). Port performance comparison applying data envelopment analysis (DEA). Maritime policy and Management, 20(2), 153-161. https://doi.org/10.1080/03088839300000025
  17. Singh, R., Mahapatra, B., Mukherjee, K., & Bhar, C. (2014). Application of DEA for performance evaluation of Indian microfinance institutions. Asian Journal of Management Research, 4(3), 597-605.
  18. Sachish, A. (1996). Productivity functions as a managerial tool in Israeli ports.Maritime policy and Management,23(4), 341-369. https://doi.org/10.1080/03088839600000094
  19. Sun, J., Yuan, Y., Yang, R., Ji, X., & Wu, J. (2017). Performance evaluation of Chinese port enterprises under significant environmental concerns: An extended DEA-based analysis. Transport Policy, 60, 75-86. https://doi.org/10.1016/j.tranpol.2017.09.001
  20. Sun, J., Yuan, Y., Yang, R., Ji, X., & Wu, J. (2017). Performance evaluation of Chinese port enterprises under significant environmental concerns: An extended DEA-based analysis. Transport Policy, 60, 75-86. https://doi.org/10.1016/j.tranpol.2017.09.001
  21. Tongzon, J. (2001). Efficiency measurement of selected Australian and other international ports using data envelopment analysis. Transportation Research Part A: Policy and Practice, 35(2), 107-122. https://doi.org/10.1016/S0965-8564(99)00049-X
  22. Wang, Z., Wu, X., Guo, J., Wei, G., & Dooling, T. A. (2020). Efficiency evaluation and PM emission reallocation of China ports based on improved DEA models. Transportation Research Part D: Transport and Environment, 82, 102317. https://doi.org/10.1016/j.trd.2020.102317
  23. Lu, W. (2019) Port Logistics Efficiency Evaluation Based on DEA Model. In International conference on Big Data Analytics for Cyber Physical Systems (pp. 461-467). Springer, Singapore.