DOI QR코드

DOI QR Code

Developmental Characteristics of Ovary and Egg of Migratory Locust, Locusta migratoria (Orthoptera: Acrididae)

풀무치(Locusta migratoria)의 난소 및 알 발육 특성

  • Kwak, Kyu-Won (Industrial Insect Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA) ;
  • Ko, Hyeon-Jin (Industrial Insect Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Sun Young (Industrial Insect Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA) ;
  • Lee, Kyeong Yong (Industrial Insect Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA) ;
  • Yoon, Hyung Joo (Industrial Insect Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, RDA)
  • 곽규원 (농촌진흥청 국립농업과학원 농업생물부 곤충산업과) ;
  • 고현진 (농촌진흥청 국립농업과학원 농업생물부 곤충산업과) ;
  • 김선영 (농촌진흥청 국립농업과학원 농업생물부 곤충산업과) ;
  • 이경용 (농촌진흥청 국립농업과학원 농업생물부 곤충산업과) ;
  • 윤형주 (농촌진흥청 국립농업과학원 농업생물부 곤충산업과)
  • Received : 2020.12.28
  • Accepted : 2021.01.26
  • Published : 2021.06.01

Abstract

As a baseline study of (common name) Locusta migratoria (Orthoptera: Acrididae) to utilize as a food source, we investigated the developmental characteristics of ovaries and eggs. Locusta migratoria had a pair of ovaries and more than 90-104 panoistic ovarioles. The ovary length in the adult stage was longer than it is in the 5th nymph stage. The length on the first day of the adult stage was 2.5-fold longer than the first day of 5th instar. The ovary length showed a tendency to increase until the 30th day of the adult phase, but decreased from the 35th day. Ovarioles length was about half of the ovary length, showing a similar tendency to the variation of ovary length. The lengths of the ovaries and the ovarioles increased proportionally to body weight. The matured eggs were identifiable from the 15th day of the adult stage, and the number was the highest on the 30th day at 50.6 individuals. Spermatheca size was also affected by the ovary development. The ovaries of L. migratoria were highly matured until the 30th day of adult stage. Weight and size of eggs increased sharply from the 4th day after egg oviposition and remained from the 7th day after spawning. Based on the above results, we found that the ovary of L. migratoria was most developed on the 30th day of adult phase, and 1st nymph is being hatched on the 10th day of the oviposition.

식용 및 사료용 곤충으로 활용되는 풀무치에 대한 기초 연구로서 발육 단계별 난소 및 알 발육 특성을 조사하였다. 난소발육을 조사한 결과, 풀무치는 1쌍의 난소와 90개 이상의 무영양실형 난소소관을 가지고 있었다. 난소 길이는 5령 약충보다 성충시기가 더 길었다. 성충 1일째 난소길이는 5령 1일보다 약 2.5배 길었다. 난소 길이는 성충 30일까지 증가한 후, 성충 35일부터 감소되었다. 난소소관 길이는 난소 길이의 1/2 정도로, 역시 난소 길이와 같은 경향을 보였다. 난소 및 난소소관 길이는 체중과 비례적인 상관관계가 있었다. 난소소관의 수는 94-104개로 성충 30일이 총 104개로 가장 많았고 35일부터 감소하였다. 성숙란 수 역시 성충 15일부터 확인할 수 있었고, 성충 30일이 50.6개로 가장 많았다. 수정낭의 크기는 또한 발육 단계에 따라 영향을 받았다. 난괴에서 알을 분리하여 산란 후 일별로 발육 특성을 조사한 결과, 산란 4일부터 무게 및 알의 크기가 급격하게 증가하였고, 산란 후 7일부터는 변화의 폭이 거의 없었다. 산란 7일부터 몸체의 구분이 가능했으며, 산란 10일에 부화되었다. 이상의 결과로 볼 때, 풀무치의 난소발육은 성충 30일이 가장 좋았고, 산란 10일경에 풀무치 1령 약충이 우화하는 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(세부과제명: 아메리카왕거저리, 풀무치의 식용 소재화를 위한 분말재조 조건 확립, 세부과제번호: PJ01352501)를 수행하는 과정에서 얻은 결과를 바탕으로 작성되었다.

References

  1. Arai, T., 1977. Effects of the daily cycle of light and temperature on hatchability and hatching time in Metrioptera hime Furukawa (Orthoptera, Tettigonidae). Kontyu 45, 107-120.
  2. Azizi, N., Ghadraoui, L.E., Petit, D., Fadil, F., Mohim, A., 2010. A simple diet for the rearing success of the desert locust, Schistocerca gregaria (Forskal, 1775) (Orthoptera, Acrididae). Bull. Soc. entomol. Fr. 115, 445-450. https://doi.org/10.3406/bsef.2010.2850
  3. Bar-Zev, A., Wajc, E., Cohen, E., Sapir, L., Applebaum, S.W., Emmerich, H., 1975. Vitellogenin accumulation in the fat body and haemolymph of Locusta migratoria in relation to egg maturation. J. Insect Physiol. 21, 1257-1263. https://doi.org/10.1016/0022-1910(75)90096-7
  4. Chen, Y., 1999. The locust and grasshopper pests of China, China Forestry Publishing House, Beijing, pp. 1-72.
  5. Clark, J., Lange, A.B., 2001. Evidence of a neural loop involved in controlling spermathecal contractions in Locusta migratoria. J. Insect Physiol. 47, 607-616. https://doi.org/10.1016/S0022-1910(00)00149-9
  6. Colbert, P.L., Spencer, R.J., Janzen, F.J., 2010. Mechanism and cost of synchronous hatching. Functional Ecol. 24, 112-121. https://doi.org/10.1111/j.1365-2435.2009.01602.x
  7. Davey, K.G., 1985. The female reproductive system. in: Comprehensive insect physiology, biochemistry and pharmacology. Kerkut G.A., Gilbert L.I. (Eds.) Pergamon Press, Oxford, pp. 15-36.
  8. Davey, K.G., Sevala, V.L., Gordon, D.R.B., 1993. The action of juvenile hormone and antigonadotropin on the follicle cells of Locusta migratoria. Invertebr. Reprod. Dev. 24, 39-45. https://doi.org/10.1080/07924259.1993.9672329
  9. Durst, P., Johnson, D.V., Leslie, R.N., Shono, K., 2010. Forest insects as food: Humans bite back. RAP publication, Bangkok, pp. 1-4.
  10. Farrow, R.A., Colless, D.H., 1980. Analysis of the interrelationships of geographical races of Locusta migratoria (Linnaeus) (Orthoptera: Acrididae), by numerical taxonomy, with special reference to sub-speciation, in the tropics and affinities of the Australian race. Acrida 9, 77-99.
  11. Gijbels, M., Lenaerts, Cynthia, L., Broeck, J.V., Marchal, E., 2019. Juvenile hormone receptor Met is essential for ovarian maturation in the desert locust, Schistocerca gregaria. Sci. Rep. 9, 10797. https://doi.org/10.1038/s41598-019-47253-x
  12. Gullan, P.J., Cranston, P.S., 2017. The insects: An outline of entomology. Wiely-Blackwell, 3, New Jersey, p. 78.
  13. Kennedy, J.S., 1949. A preliminary analysis of oviposition behavior by Locusta (Orthoptera, Acrididae) in relation to moisture. Proc. Roy. Soc. Lona. 89, 83-89.
  14. Lange, A.B., 1992. The neural and hormonal control of locust oviducts and accessory structure. Adv. Comp. Endocrinol. 1, 109-115.
  15. Lange, A.B., da Silva, R., 2007. Neural and hormonal control of muscular activity of the spermathecal in the locust, Locusta migratoria. Peptides 28, 174-184. https://doi.org/10.1016/j.peptides.2006.08.028
  16. Lange, A.B., 2009. Neural mechanisms coordinating the female reproductive system in the locust. Front. Biosci. 14, 4401-4415. https://doi.org/10.2741/3536
  17. Mekonnen, M.M., Hoekstra, A.Y., 2011. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577-1600. https://doi.org/10.5194/hess-15-1577-2011
  18. Minks, G., Hoffman, J.A., 1975. Biological aspects of juvenile hormone action in the adult Locusta migratoria. Arch. Neerl. Zool. 17, 175-258. https://doi.org/10.1163/036551667X00010
  19. Nishide, Y., Suzuki, T., Tanaka, S., 2017a. Synchrony in the hatching of eggs in the desert locust Schistocerca gregaria (Orhoptera: Acrididae): Egg condition influences hatching time in the laboratory and under simulated field temperatures. Appl. Entomol. Zool. 52, 599-604. https://doi.org/10.1007/s13355-017-0517-9
  20. Nishide, Y., Suzuki, T., Tanaka, S., 2017b. The hatching time of Locusta migratoria under outdoor conditions: role of temperature and adaptive significance. Physiol. Entomol. 42, 146-155. https://doi.org/10.1111/phen.12184
  21. Oonincx, D.G., Van Itterbeeck, J., Heetkamp, M.J., Van den Brand, H., Van Loon, J.J., Van Huis, A., 2010. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLos One 5, e14445. https://doi.org/10.1371/journal.pone.0014445
  22. Pener, M.P., 1991. Locust phase polyphenism and its endocrine relations. Adv. Insect Physiol. 23, 1-79. https://doi.org/10.1016/S0065-2806(08)60091-0
  23. Phipps, J., 1950. The maturation of the ovaries and the relation between weight and maturity in Locusta migratoria migratorioides (R. & F.). Bull. Ent. Res. 40, 539-557. https://doi.org/10.1017/S0007485300024445
  24. Ramos-Elorduy, J., Moreno, J.M., Vazquez, A.I., Landero, I., OlivaRivera, H., Camacho, V.H., 2011. Edible lepidoptera in Mexico: Geographic distribution, ethnicity, economic and nutritional importance for rural people. J. Ethnobiol. Ethnomed. 7, 3-22. https://doi.org/10.1186/1746-4269-7-3
  25. Riddiford, L.M., 2012. How does juvenile hormone control insect metamorphosis and reproduction? Gen. Comp. Endocrinol. 179, 477-484. https://doi.org/10.1016/j.ygcen.2012.06.001
  26. Sakamoto, H., Tanaka, S., Hata, T., 2019. Identification of vibrational signals emitted by embryos of the migratory locust Locusta migratoria (Orthoptera: Acrididae) that induce synchronous hatching. Eur. J. Entomol. 116, 258-268. https://doi.org/10.14411/eje.2019.030
  27. Sevala, V.L., Davey, K.G., Prestwich, G.D., 1995. Photoaffinity labeling and characterization of a juvenile hormone binding protein in the membranes of follicle cells of Locusta migratoria. Insect Biochem. Mol. Biol. 25, 267-273. https://doi.org/10.1016/0965-1748(94)00065-P
  28. Shimizu, T., Masaki, S., 1997. Daily time of hatching in Nembiine crickets. Jap. J. Entomol. 65, 335-342.
  29. Tanaka, S., 1992. The significance of embryonic diapause in a Japanese strain of the migratory Locust, Locusta migratoria (Orthoptera, Acrididae). Jpn. J. Ent. 60, 503-520.
  30. Tanaka, S., 2017. Locusta migratoria (Orhoptera: Acrididae) embryos monitor neighboring eggs for hatching synchrony. J. Orthopt. Res. 26, 103-115. https://doi.org/10.3897/jor.26.20935
  31. Tauber, M.J., Tauber, C.A., Masaki, S., 1986. Seasonal adaptation of insects. Oxford University Press, London, pp. 1-411.
  32. Uvarov, B.P., 1966. Grasshoppers and Locusts, Vol. 1. Cambridge University Press, Cambridge, p. 481.
  33. Uvarov, B.P., 1977. Grasshoppers and Locusts, Vol. 2. Centre for Overseas Pest Research, London, p. 613.
  34. Van Huis, A., 2010. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLos One 5, e14445. https://doi.org/10.1371/journal.pone.0014445
  35. Van Huis, A., van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., Vantomme, P., 2013 Edible insects: Future prospects for food and feed security. Food and Agriculture Organization of the United Nations. Rome, pp. 1-187.
  36. Vincent, J.F.V., 1975. How dose the female locust dig her oviposition hole? J. Ent. 50, 175-181.
  37. Wyatt, G.R., Braun, R.P., Zhang, J., 1996. Priming effect in gene activation by juvenile hormone binding protein in the membrane of follicle cells of Locusta migratoria. Insect Biochem. Mol. Biol. 25, 267-273. https://doi.org/10.1016/0965-1748(94)00065-P
  38. Yamagishi, M., Tanaka, S., 2009. Overwintering biology and morphological characteristics of the migratory locust, Locusta migratoria after outbreaks on Iheya Island, Japan. Appl. Entomol. Zool. 44, 165-174. https://doi.org/10.1303/aez.2009.165