DOI QR코드

DOI QR Code

Estimation of the allowable range of prediction errors to determine the adequacy of groundwater level simulation results by an artificial intelligence model

인공지능 모델에 의한 지하수위 모의결과의 적절성 판단을 위한 허용가능한 예측오차 범위의 추정

  • Shin, Mun-Ju (Water Resources Research Team, Jeju Province Development Corporation) ;
  • Moon, Soo-Hyoung (Water Resources Research Team, Jeju Province Development Corporation) ;
  • Moon, Duk-Chul (Water Resources Research Team, Jeju Province Development Corporation) ;
  • Ryu, Ho-Yoon (Water Resources Research Team, Jeju Province Development Corporation) ;
  • Kang, Kyung Goo (Research and Development Center, Jeju Province Development Corporation)
  • 신문주 (제주특별자치도개발공사 수자원연구팀) ;
  • 문수형 (제주특별자치도개발공사 수자원연구팀) ;
  • 문덕철 (제주특별자치도개발공사 수자원연구팀) ;
  • 류호윤 (제주특별자치도개발공사 수자원연구팀) ;
  • 강경구 (제주특별자치도개발공사 품질연구본부)
  • Received : 2021.04.22
  • Accepted : 2021.05.13
  • Published : 2021.07.31

Abstract

Groundwater is an important water resource that can be used along with surface water. In particular, in the case of island regions, research on groundwater level variability is essential for stable groundwater use because the ratio of groundwater use is relatively high. Researches using artificial intelligence models (AIs) for the prediction and analysis of groundwater level variability are continuously increasing. However, there are insufficient studies presenting evaluation criteria to judge the appropriateness of groundwater level prediction. This study comprehensively analyzed the research results that predicted the groundwater level using AIs for various regions around the world over the past 20 years to present the range of allowable groundwater level prediction errors. As a result, the groundwater level prediction error increased as the observed groundwater level variability increased. Therefore, the criteria for evaluating the adequacy of the groundwater level prediction by an AI is presented as follows: less than or equal to the root mean square error or maximum error calculated using the linear regression equations presented in this study, or NSE ≥ 0.849 or R2 ≥ 0.880. This allowable prediction error range can be used as a reference for determining the appropriateness of the groundwater level prediction using an AI.

지하수는 지표수와 함께 용수로 사용가능한 중요한 수자원이며 특히 섬 지역의 경우 전체 수자원 중 지하수의 이용 비율이 상대적으로 높기 때문에 안정적인 이용을 위해 지하수위 변동성에 대한 연구는 필수적이다. 지하수위 변동성의 예측 및 분석을 위해 인공지능 모델을 활용한 연구들이 지속적으로 증가하고 있으나 지하수위 예측결과의 적절성을 판단할 수 있는 평가기준을 제시한 연구는 충분하지 않다. 본 연구에서는 허용가능한 지하수위 예측오차의 범위를 제시하기 위해 과거 20년 동안 전 세계 다양한 지역을 대상으로 인공지능 모델을 활용하여 지하수위를 예측한 연구결과들을 종합적으로 분석하였다. 그 결과 관측지하수위의 변동성이 커질수록 인공지능 모델에 의한 지하수위 예측오차는 증가하였다. 따라서 관측지하수위 최대변동폭과 예측오차 간의 상관성과 기존 연구들에서 제시한 평가지수들을 고려하여 평가기준을 산정하였으며, 인공지능 모델에 의한 지하수위 예측결과의 적절한 평가기준은 도출된 선형회귀식에 의한 평균제곱근오차 또는 최대오차 이하이거나, NSE ≥ 0.849 또는 R2 ≥ 0.880 이다. 이 허용가능한 오차범위는 인공지능 모델을 활용한 지하수위 예측결과의 적절성 판단을 위한 참고자료로 사용할 수 있다.

Keywords

References

  1. Adamowski, J., and Chan, H.F. (2011). "A wavelet neural network conjunction model for groundwater level forecasting." Journal of Hydrology, Vol. 407, No. 1-4, pp. 28-40. https://doi.org/10.1016/j.jhydrol.2011.06.013
  2. Afzaal, H., Farooque, A.A., Abbas, F., Acharya, B., and Esau, T. (2020). "Groundwater estimation from major physical hydrology components using artificial neural networks and deep learning." Water, Vol. 12, No. 1, p. 5. https://doi.org/10.3390/w12010005
  3. Ala-Aho, P., Rossi, P.M., Isokangas, E., and Klove, B. (2015). "Fully integrated surface-subsurface flow modelling of groundwaterlake interaction in an esker aquifer: Model verification with stable isotopes and airborne thermal imaging." Journal of Hydrology, Vol. 522, pp. 391-406. https://doi.org/10.1016/j.jhydrol.2014.12.054
  4. Barthel, R., and Banzhaf, S. (2016). "Groundwater and surface water interaction at the regional-scale-a review with focus on regional integrated models." Water Resources Management, Vol. 30, No. 1, pp. 1-32. https://doi.org/10.1007/s11269-015-1163-z
  5. Barzegar, R., Fijani, E., Moghaddam, A.A., and Tziritis, E. (2017). "Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models." Science of the Total Environment, Vol. 599, pp. 20-31. https://doi.org/10.1016/j.scitotenv.2017.04.189
  6. Brunner, P., and Simmons, C.T. (2012). "HydroGeoSphere: A fully integrated, physically based hydrological model." Groundwater, Vol. 50, No. 2, pp. 170-176. https://doi.org/10.1111/j.1745-6584.2011.00882.x
  7. Chang, F.J., Chang, L.C., Huang, C.W., and Kao, I.F. (2016). "Prediction of monthly regional groundwater levels through hybrid soft-computing techniques." Journal of Hydrology, Vol. 541, pp. 965-976. https://doi.org/10.1016/j.jhydrol.2016.08.006
  8. Chen, L.H., Chen, C.T., and Lin, D.W. (2011). "Application of integrated back-propagation network and self-organizing map for groundwater level forecasting." Journal of Water Resources Planning and Management, Vol. 137, No. 4, pp. 352-365. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000121
  9. Chen, L.H., Chen, C.T., and Pan, Y.G. (2010). "Groundwater level prediction using SOM-RBFN multisite model." Journal of Hydrologic Engineering, Vol. 15, No. 8, pp. 624-631. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000218
  10. Coulibaly, P., Anctil, F., Aravena, R., and Bobee, B. (2001). "Artificial neural network modeling of water table depth fluctuations." Water Resources Research, Vol. 37, No. 4, pp. 885-896. https://doi.org/10.1029/2000wr900368
  11. Daliakopoulos, I.N., Coulibaly, P., and Tsanis, I.K. (2005). "Groundwater level forecasting using artificial neural networks." Journal of Hydrology, Vol. 309, No. 1-4, pp. 229-240. https://doi.org/10.1016/j.jhydrol.2004.12.001
  12. Gong, Y., Zhang, Y., Lan, S., and Wang, H. (2015). "A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida." Water Resources Management, Vol. 30, No. 1, pp. 375-391. https://doi.org/10.1007/s11269-015-1167-8
  13. He, Z., Zhang, Y., Guo, Q., and Zhao, X. (2014). "Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions." Water Resources Management, Vol. 28, No. 15, pp. 5297-5317. https://doi.org/10.1007/s11269-014-0802-0
  14. Huang, F., Huang, J., Jiang, S.H., and Zhou, C. (2017). "Prediction of groundwater levels using evidence of chaos and support vector machine." Journal of Hydroinformatics, Vol. 19, No. 4, pp. 586-606. https://doi.org/10.2166/hydro.2017.102
  15. Jeju Special Self-Governing Province (JSSGP) (2018). Comprehensive water resources management plan in Jeju Island. pp. 1-328.
  16. Jeong, J., and Park, E. (2019). "Comparative applications of datadriven models representing water table fluctuations." Journal of Hydrology, Vol. 572, pp. 261-273. https://doi.org/10.1016/j.jhydrol.2019.02.051
  17. Jha, M.K., and Sahoo, S. (2014). "Efficacy of neural network and genetic algorithm techniques in simulating spatio-temporal fluctuations of groundwater." Hydrological Processes, Vol. 29, No. 5, pp. 671-691. https://doi.org/10.1002/hyp.10166
  18. Juan, C., Genxu, W., and Tianxu, M. (2015). "Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model." Journal of Hydrology, Vol. 529, pp. 1211-1220. https://doi.org/10.1016/j.jhydrol.2015.09.038
  19. Khalil, B., Broda, S., Adamowski, J., Ozga-Zielinski, B., and Donohoe, A. (2015). "Short-term forecasting of groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural network models." Hydrogeology Journal, Vol. 23, No. 1, pp. 121-141. https://doi.org/10.1007/s10040-014-1204-3
  20. Kisi, O., and Shiri, J. (2012). "Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations." Hydrology Research, Vol. 43, No. 3, pp. 286-300. https://doi.org/10.2166/nh.2012.104b
  21. Krishna, B., Satyaji Rao, Y.R., and Vijaya, T. (2008). "Modelling groundwater levels in an urban coastal aquifer using artificial neural networks." Hydrological Processes: An International Journal, Vol. 22, No. 8, pp. 1180-1188. https://doi.org/10.1002/hyp.6686
  22. Kumar, D., Roshni, T., Singh, A., Jha, M.K., and Samui, P. (2020). "Predicting groundwater depth fluctuations using deep learning, extreme learning machine and Gaussian process: A comparative study." Earth Science Informatics, Vol. 13, No. 4, pp. 1237-1250. https://doi.org/10.1007/s12145-020-00508-y
  23. Lee, S., Lee, K.K., and Yoon, H. (2018). "Using artificial neural network models for groundwater level forecasting and assessment of the relative impacts of influencing factors." Hydrogeology Journal, Vol. 27, No. 2, pp. 567-579. https://doi.org/10.1007/s10040-018-1866-3
  24. Maxwell, R.M., Condon, L.E., and Kollet, S.J. (2015). "A highresolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3." Geoscientific Model Development, Vol. 8, No. 3, pp. 923-937. https://doi.org/10.5194/gmd-8-923-2015
  25. McDonald, M.G., and Harbaugh, A.W. (1988). A modular threedimensional finite-difference ground-water flow model. Vol. 6. US Geological Survey, VA, U.S.
  26. Mirzavand, M., Khoshnevisan, B., Shamshirband, S., Kisi, O., Ahmad, R., and Akib, S. (2015). "Evaluating groundwater level fluctuation by support vector regression and neuro-fuzzy methods: A comparative study." Natural Hazards, Vol. 1, No. 1, pp. 1-15. https://doi.org/10.1007/BF00168217
  27. Mohanty, S., Jha, M.K., Kumar, A., and Panda, D.K. (2013). "Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in KathajodiSurua Inter-basin of Odisha, India." Journal of Hydrology, Vol. 495, pp. 38-51. https://doi.org/10.1016/j.jhydrol.2013.04.041
  28. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith, T.L. (2007). "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the ASABE, Vol. 50, No. 3, pp. 885-900. https://doi.org/10.13031/2013.23153
  29. Mukherjee, A., and Ramachandran, P. (2018). "Prediction of GWL with the help of GRACE TWS for unevenly spaced time series data in India: Analysis of comparative performances of SVR, ANN and LRM." Journal of Hydrology, Vol. 558, pp. 647-658. https://doi.org/10.1016/j.jhydrol.2018.02.005
  30. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models part I-A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  31. Nayak, P.C., Rao, Y.S., and Sudheer, K.P. (2006). "Groundwater level forecasting in a shallow aquifer using artificial neural network approach." Water Resources Management, Vol. 20, No. 1, pp. 77-90. https://doi.org/10.1007/s11269-006-4007-z
  32. Nie, S., Bian, J., Wan, H., Sun, X., and Zhang, B. (2017). "Simulation and uncertainty analysis for groundwater levels using radial basis function neural network and support vector machine models." Journal of Water Supply: Research and Technology- AQUA, Vol. 66, No. 1, pp. 15-24. https://doi.org/10.2166/aqua.2016.069
  33. Nourani, V., and Mousavi, S. (2016). "Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method." Journal of Hydrology, Vol. 536, pp. 10-25. https://doi.org/10.1016/j.jhydrol.2016.02.030
  34. Rahman, A.S., Hosono, T., Quilty, J.M., Das, J., and Basak, A. (2020). "Multiscale groundwater level forecasting: Coupling new machine learning approaches with wavelet transforms." Advances in Water Resources, Vol. 141, p. 103595. https://doi.org/10.1016/j.advwatres.2020.103595
  35. Rajaee, T., Ebrahimi, H., and Nourani, V. (2019). "A review of the artificial intelligence methods in groundwater level modeling." Journal of Hydrology, Vol. 572, pp. 336-351. https://doi.org/10.1016/j.jhydrol.2018.12.037
  36. Rakhshandehroo, G.R., Vaghefi, M., and Aghbolaghi, M.A. (2012). "Forecasting groundwater level in Shiraz plain using artificial neural networks." Arabian Journal for Science and Engineering, Vol. 37, No. 7, pp. 1871-1883. https://doi.org/10.1007/s13369-012-0291-5
  37. Sahoo, S., and Jha, M.K. (2013). "Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment." Hydrogeology Journal, Vol. 21, No. 8, pp. 1865-1887. https://doi.org/10.1007/s10040-013-1029-5
  38. Shin, M.J., Moon, S.H., Kang, K.G., Moon, D.C., and Koh, H.J. (2020). "Analysis of groundwater level variations caused by the changes in groundwater withdrawals using long short-term memory network." Hydrology, Vol. 7, No. 3, p. 64. https://doi.org/10.3390/hydrology7030064
  39. Sun, Y., Wendi, D., Kim, D.E., and Liong, S.Y. (2016). "Application of artificial neural networks in groundwater table forecasting-a case study in a Singapore swamp forest." Hydrology and Earth System Sciences, Vol. 20, No. 4. pp. 1405-1412. https://doi.org/10.5194/hess-20-1405-2016
  40. Taormina, R., Chau, K.W., and Sethi, R. (2012). "Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon." Engineering Applications of Artificial Intelligence, Vol. 25, No. 8, pp. 1670-1676. https://doi.org/10.1016/j.engappai.2012.02.009
  41. Therrien, R. (1992). Three-dimensional analysis of variably saturated flow and solute transport in discretely-fractured porous media. Ph.D. thesis, University of Waterloo, Waterloo, Canada.
  42. Todd, D.K., and Larry, W.M. (2004). Groundwater hydrology, Third Edition. John Wiley & Sons Inc., Hoboken, NJ, USA, pp. 1-656.
  43. Wen, X., Feng, Q., Deo, R.C., Wu, M., and Si, J. (2017). "Wavelet analysis-artificial neural network conjunction models for multiscale monthly groundwater level predicting in an arid inland river basin, northwestern China." Hydrology Research, Vol. 48, No. 6, pp. 1710-1729. https://doi.org/10.2166/nh.2016.396
  44. White, J.T., Doherty, J.E., and Hughes, J.D. (2014). "Quantifying the predictive consequences of model error with linear subspace analysis." Water Resources Research, Vol. 50, No. 2, pp. 1152-1173. https://doi.org/10.1002/2013WR014767
  45. White, J.T., Knowling, M.J., and Moore, C.R. (2020). "Consequences of groundwater-model vertical discretization in risk-based decision-making." Groundwater, Vol. 58, No. 5, pp. 695-709.
  46. Yang, Z.P., Lu, W.X., Long, Y.Q., and Li, P. (2009). "Application and comparison of two prediction models for groundwater levels: A case study in Western Jilin Province, China." Journal of Arid Environments, Vol. 73, No. 4-5, pp. 487-492. https://doi.org/10.1016/j.jaridenv.2008.11.008
  47. Yoon, H., Hyun, Y., Ha, K., Lee, K.K., and Kim, G.B. (2016). "A method to improve the stability and accuracy of ANN-and SVM-based time series models for long-term groundwater level predictions." Computers and Geosciences, Vol. 90, pp. 144-155.
  48. Yoon, H., Jun, S.C., Hyun, Y., Bae, G.O., and Lee, K.K. (2011). "A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer." Journal of Hydrology, Vol. 396, No. 1-2, pp. 128-138. https://doi.org/10.1016/j.jhydrol.2010.11.002
  49. Yu, H., Wen, X., Feng, Q., Deo, R.C., Si, J., and Wu, M. (2018). "Comparative study of hybrid-wavelet artificial intelligence models for monthly groundwater depth forecasting in extreme arid regions, Northwest China." Water Resources Management, Vol. 32, No. 1, pp. 301-323. https://doi.org/10.1007/s11269-017-1811-6
  50. Zhang, J., Zhu, Y., Zhang, X., Ye, M., and Yang, J. (2018). "Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas." Journal of Hydrology, Vol. 561, pp. 918-929. https://doi.org/10.1016/j.jhydrol.2018.04.065