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Multi-omics approaches are novel frameworks that integrate 
multiple omics datasets generated from the same patients 
to better understand the molecular and clinical features 
of cancers. A wide range of emerging omics and multi-
view clustering algorithms now provide unprecedented 
opportunities to further classify cancers into subtypes, 
improve the survival prediction and therapeutic outcome 
of these subtypes, and understand key pathophysiological 
processes through different molecular layers. In this review, 
we overview the concept and rationale of multi-omics 
approaches in cancer research. We also introduce recent 
advances in the development of multi-omics algorithms 
and integration methods for multiple-layered datasets from 
cancer patients. Finally, we summarize the latest findings 
from large-scale multi-omics studies of various cancers 
and their implications for patient subtyping and drug 
development.
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INTRODUCTION

Living organisms experience millions of signals transferred 

every second between cells, tissues, organs, and external 

environmental stimuli. Fine-tuned responses at various de-

grees and scales within the human body are central to the 

homeostatic mechanism that copes with potentially harmful 

environmental perturbations, including pathogens, smoking, 

and drugs, and interacts with the genetic background arising 

from spontaneous somatic mutations and numerous germ-

line variants. Thus, a holistic view of homeostatic mechanisms 

through the study of genomic and epigenetic aberrations 

is needed to understand the core of cancer biology and the 

pathophysiological features of cancer during oncogenesis 

and tumor progression.

	 A multi-omics study is a data-driven scientific investigation 

that analyzes a range of high-dimensional datasets at multi-

ple levels and scales to reveal the complexity of cells and their 

environment. Such type of study can provide novel frame-

works to untangle biological phenomena or models to test 

certain hypotheses using various datasets. In cancer research, 

a paradigm shift toward multi-omics approaches has been 

achieved with the recent development of high-throughput 

technologies in genomics and transcriptomics, increasing 

effort in large-scale research collaboration, and advancement 

of computational algorithms (Basu et al., 2013; Berns and 

Bernards, 2012; Cancer Genome Atlas Network, 2012b; 

Gentles and Gallahan, 2011; Whitehurst et al., 2007). To-

gether with advances in genomics and transcriptomics, 

proteomics is emerging as a prominent field to elucidate the 
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dynamics of gene activity. Large-scale proteomic research, 

such as that promoted by the Clinical Proteomic Tumor 

Analysis Consortium (CPTAC), has uncovered the ubiquitous 

link of biomolecules to the environment and disease status 

(Gillette et al., 2020; Krug et al., 2020; Mertins et al., 2016; 

Mun et al., 2019; Zhang et al., 2016). Such a transition has 

extensively deepened our knowledge on the function of 

driver genes and proteins and has provided a comprehensive 

understanding of the signaling networks occurring between 

cells, tissues, organs, and the entire organism. Multi-omics 

approaches have been applied to numerous clinical studies 

for better identification of clinical subtypes or drug resistance, 

prediction of effective combination therapies, and identifica-

tion of predictive biomarkers to increase the response rate to 

targeted treatments.

	 In this review, we introduce the concept of multi-omics 

approaches in cancer research and provide useful resources 

for this. We focus on some of the clinical and basic science 

studies that have benefited from the use of a multi-omics 

approach to uncover novel concepts and properties. We also 

discuss some of the challenges connected to multi-omics 

approaches and how this relatively young field of study can 

have a positive impact on cancer research.

MULTI-OMICS APPROACHES IN CANCER RESEARCH

Over the past decades, there have been rapid advances in 

high-throughput technologies, which enable a range of ge-

nomic analyses at the cellular and tissue levels. Furthermore, 

highly developed genome screening technologies, such as 

whole exome sequencing (WES) and whole genome se-

quencing (WGS), have enabled comprehensive collection of 

gene expression data (e.g., RNA sequencing [RNA-seq] and 

microRNA [miRNA] profiling) and DNA methylation profiles 

(Cancer Genome Atlas Network, 2012a; 2012b; Cancer Ge-

nome Atlas Research Network, 2011, 2013; Cancer Genome 

Atlas Research Network et al., 2013a; Chin et al., 2006; Hen-

nessy et al., 2010; Neve et al., 2006). Single-cell technologies 

provide new biological insights for the understanding of 

gene activity and cytological characteristics at the cellular level 

(Lee et al., 2021; Stuart et al., 2019; Stuart and Satija, 2019). 

In addition, large amounts of proteins and metabolites can 

be detected with high accuracy owing to the maturation of 

mass spectrometry techniques (Lai et al., 2018; Palmer et 

al., 2017; Schubert et al., 2017). Proteomics technologies 

allow to detect almost all human proteins and are advancing 

toward single-cell resolution (Marx, 2019; Vidova and Spacil, 

2017). However, a single platform is insufficient to decipher 

the complexity underlying cancer genomes or to find a robust 

association with cancer driver mutations (Bozic et al., 2010; 

Greenman et al., 2007). Consequently, there is an emerging 

effort in the development of data-driven mathematical and 

computational methods to analyze high-dimensional datasets 

obtained from several novel analysis platforms (Bodenmiller 

et al., 2012; Hill et al., 2012; Pritchard et al., 2013; Qiu et al., 

2011; Sumazin et al., 2011; Tentner et al., 2012; Teves and 

Won, 2020).

	 In this regard, multi-omics approaches have been intro-

duced to integrate multiple omics datasets generated from 

patients and identify coherent and preserved molecular or 

clinical features across different datasets (Fig. 1). Multi-om-

ics studies aim to identify patient subgroups and biological 

features underlying cancer pathophysiology; they have been 

applied to overcome current complexities, due to genetic and 

phenotypic heterogeneity, that hinder our understanding of 

cancer genesis and progression, and to design effective pre-

dictive models to validate novel therapies and drugs. Within 

such an integrative framework, there has been an emerging 

effort to develop computational and mathematical methods 

that can decipher the complexity of cancer heterogeneity, 

since genomic and epigenetic instability in tumors can alter 

intracellular responses to the local environment and affect 

the individual as a whole through the tumorigenic process.

	 Over the last decade, a range of modeling approaches have 

been developed to deal with various aspects of cancer. In 

particular, the integration of large omics datasets has enabled 

modeling of cellular behaviors at the tissue level to under-

stand cancer pathophysiology or the behavior of cancer cells 

in response to drugs and angiogenesis (Carro et al., 2010; 

Hong et al., 2020; Huang et al., 2013; Iadevaia et al., 2010; 

Pascal et al., 2013; Swanson et al., 2011). Multi-omics studies 

have opened new avenues for the implementation of target-

ed therapies for cancer treatment. Integrative approaches 

with large-scale multi-omics datasets have the potential to 

delineate the relationship between molecular markers and 

Fig. 1. Overview of multi-omics approaches in cancer research. 

The integration of omics datasets is a crucial step in multi-

omics studies. Datasets such as somatic mutations, CNV, gene 

expression, methylation, and proteome datasets are merged 

using various computational frameworks with distinct methods. 

The integration enables the comparison of molecular features 

across multiple viewpoints and the clustering of patients with 

relevant clinical features. Possible outcomes include enhanced 

identification of clinical subtypes, understanding of cancer 

pathophysiology, prediction of potential drug targets, and clinical 

decision support.
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the response to targeted therapies. A more comprehensive 

understanding of the molecular characteristics of non-respon-

sive or resistant tumors could enable more precise predictions 

of therapy outcomes, resulting in an increased therapeutic 

efficacy or in the ability to bypass drug resistance. In addition, 

multi-omics approaches might allow to identify subgroups of 

patients that are most likely to benefit from therapy.

	 Cancer cells exhibit extreme levels of genetic heteroge-

neity and genomic instability. Thus, many putative driver 

aberrations can be observed: some could be bona fide driv-

ers of cancer, but most of them are passenger mutations. 

Therefore, a major challenge in cancer research is to identify 

biomarkers or potential targets for cancer treatment (Cancer 

Genome Atlas Research Network, 2013; Cancer Genome 

Atlas Research Network et al., 2013a). On the other hand, 

it remains to be elucidated whether passenger aberrations 

within cancer genes play a role in cellular functions associ-

ated with cancer pathophysiology and response to targeted 

therapeutics. To evaluate this, a recent study developed 

a systems-based computational method that can assess 

low-frequency mutations in impure and heterogeneous sam-

ples (Cibulskis et al., 2013). This study successfully reported a 

range of sub-clonal drivers underpinning tumor progression 

and treatment resistance. Thus, multi-omics approaches can 

provide an efficient analytic framework to distinguish drivers 

from passenger mutations and dissect the genetic heteroge-

neity of cancer cells.

COMPUTATIONAL FRAMEWORKS FOR MULTI-OMICS 
STUDIES

Recent advances in high-throughput sequencing technol-

ogies have allowed the measurement of a large number 

of molecular patterns of cancer in a single experiment. 

High-throughput measurements enable rapid and unbiased 

profiling of somatic mutations, copy number variations 

(CNVs), and mRNA, non-coding RNA, and protein expres-

sion. Various computational algorithms have been proposed 

for multi-view clustering, to detect coherent features from 

heterogeneous inputs. In the biomedical domain, this has 

facilitated the definition of the clinical subtypes of complex 

disorders, such as cancers. Clustering methods have been 

widely developed to identify co-expressed gene modules and 

subgroups of patients within a certain disease (Langfelder 

and Horvath, 2008). The integration of multi-omics datasets 

for the same set of samples has been devised to better un-

derstand fine-tuned structures, which are not revealed by ex-

amining only a single data type. For instance, cancer subtypes 

can be classified based on multi-omics datasets, such as gene 

expression and mutation profiles, from the same patients 

(Chauvel et al., 2020). Multi-omics clustering can ameliorate 

potential bias or noise from a single omics dataset as the in-

tegration of multiple omics layers can fully represent different 

cellular aspects from the genomic to the epigenomic level 

(Nguyen and Wang, 2020; Wang et al., 2014).

	 To date, various tools have been developed for multi-om-

ics datasets with the following objectives: 1) identify disease 

subtypes or classify subgroups, 2) identify putative biomark-

ers for diagnostics and driver genes for diseases, and 3) gain 

insights into disease biology. Multi-omics frameworks are 

mostly based on Bayesian statistics (Kirk et al., 2012; Lock 

and Dunson, 2013; Shen et al., 2009; Vaske et al., 2010; Wu 

et al., 2015; Yuan et al., 2011), similarity networks (Nguyen 

et al., 2019; Wang et al., 2014), joint nonnegative matrix 

factorization (Yang and Michailidis, 2016), and sparse canon-

ical correlation analysis (Witten and Tibshirani, 2009). Several 

multi-omics tools are highly used in the field or show outper-

formance for subtype prediction and survival analysis (Table 

1). However, most multi-omics tools rely on different math-

ematical theories and support different ranges of data types. 

Even when using the same data, their performance varies 

greatly depending on the biological characteristics of the 

study objects. Therefore, acquiring biological insights from 

multi-omics data is a computational and biological challenge, 

requiring the researcher to select appropriate multi-omics 

tools.

iCluster
iCluster is an early multi-omics integration method that first 

integrates multiple inputs and then identifies multi-omics 

clusters by joint estimation of latent variables and through 

clustering and expectation–maximization-like algorithms 

(Shen et al., 2009). It was initially used for large-scale cancer 

genomic projects, for example for breast and lung cancer, in 

which gene expression and CNVs were summarized for mul-

tiple subgroups of patients. Since the runtime of iCluster in-

creases with the number of features, iCluster+, providing full 

Bayesian regularization for clustering, has recently been pro-

posed (Mo et al., 2013). iCluster+ identified colorectal cancer 

subtypes with different cancer progression pathways, one of 

which was found not to require aggressive drug treatment in 

addition to surgery.

iOmicsPASS
iOmicsPASS is a network-based algorithm that can merge 

genome-based networks with multi-omics datasets (Koh et 

al., 2019). Scores for biological interaction are computed by 

transformation of omics datasets and used as an input to 

construct networks, whose edges are defined for phenotypic 

groups using a modified nearest shrunken centroid algo-

rithm. iOmicsPASS was shown to improve the identification 

of breast invasive ductal carcinoma (IDC) subtypes by inte-

grating mRNA expression and protein abundance data. Such 

integrated analysis by iOmicsPASS revealed a new transcrip-

tional regulatory network in a specific breast cancer subtype 

that could not be found through single-omics analysis.

SALMON (Survival Analysis Learning with Multi-Omics 
Neural Networks)
SALMON is a deep learning method based on co-expression 

networks (Huang et al., 2019). It takes multi-omics data-

sets from cancer patients and computes eigengenes from 

co-expression modules, and can thus ameliorate the issue of 

overfitting arising whenever multi-omics approaches are ap-

plied to datasets containing many features but few samples 

are available. For example, by analyzing mRNA and miRNA 

datasets from 583 female breast invasive carcinoma patients, 

SALMON provided a good prediction of survival.
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SNF (Similarity Network Fusion)
SNF is a novel algorithm for the generation of patient sim-

ilarity networks that uses an iterative procedure based on 

message passing (Wang et al., 2014). It calculates similarity 

networks for individual patients and then merges them to 

identify disease subtypes and predict phenotypes. In contrast 

to early integration, SNF takes advantage of individual omics 

datasets to construct independent single-omics networks 

and find coherent modules sourced from similar biological 

features across patients with similar clinical features. SNF it-

eratively applies a local K-nearest neighbors (KNN) approach 

to compute a patient similarity matrix for each omics dataset. 

When merging the global similarity matrices from all omics 

datasets, SNF conducts averaging of similarity matrices with 

iterative updating. It has demonstrated high efficiency in 

identifying clinical subtypes of cancers and other disorders 

such as autism (Cavalli et al., 2017; Ramaswami et al., 2020).

NEMO (NEighborhood based Multi-Omics clustering)
NEMO is a multi-omics clustering method that can be used 

for partial datasets without the need for data imputation 

(Rappoport and Shamir, 2019). NEMO first calculates an in-

ter-patient similarity matrix for each omics dataset and then 

combines the matrices of different omics datasets into a 

single matrix. Clusters are identified using an adjusted Rand 

index to compute the similarity between patients by distance. 

NEMO was shown to outperform other multi-omics cluster-

ing algorithms when tested on multi-omics datasets of 10 

cancers, and exhibited enhanced cluster detection from par-

tial datasets.

MONET (Multi Omic clustering by Non-Exhaustive Types)
MONET is a method for detecting similar modules commonly 

present across multi-omics datasets (Rappoport et al., 2020). 

MONET utilizes three omics datasets (mRNA expression, 

Table 1. List of computational frameworks for multi-omics cancer studies

Study Findings Dataset Principles

iCluster (Curtis et al., 2012;  

Shen et al., 2009)

Novel subgroups from 2,000 

breast tumors 

mRNA expressiona

CNVc

Joint latent variable model-based 

clustering method

iOmicsPASS (Koh et al., 2019) Novel transcriptional regulatory 

network from TCGA/CPTAC 

breast cancer data

mRNA expressiona

CNVd

Protein expressione

Network construction using a  

modified nearest shrunken cen-

troid algorithm

SALMON (Huang et al., 2019) Improved survival analysis Mutationh

mRNA/miRNA expression

CNVh

Deep learning based on  

co-expression modules

SNF (Wang et al., 2014) Subtype classification of clinical 

relevance 

mRNAa/miRNA expressionb

DNA methylationg

Patient similarity networks using 

an iterative procedure based on 

message passing

NEMO (Rappoport and Shamir, 

2019)

Novel subtypes from even partial 

AML datasets

mRNAa/miRNA expressionb

DNA methylationg

Sample clustering from partial  

datasets using an adjusted Rand 

index

MONET (Rappoport et al., 2020) Module detection of patient 

subtypes and improved survival 

analysis

mRNAa/miRNA expressionb

DNA methylationg

Detect similar modules commonly 

present across multi-omics  

datasets

PARADIGM (Vaske et al., 2010) Detection of pathways affected by 

cancer with fewer false positives

mRNA expressiona

CNVc

Pathway recognition algorithm 

applied to multi-omics datasets

LRAcluster (Wu et al., 2015) Subtype detection in both  

pan-cancer analysis and single 

cancer types

Mutationi

mRNA expressiona

CNVd

DNA methylationg

Performance of low-rank  

approximation from probabilistic 

models

BCC (Lock and Dunson, 2013) Detection of patient subtypes in  

response to survival rates and  

driver mutation signatures

mRNAa/miRNA expressionb

DNA methylationg

Protein expressionf

Bayesian framework for estimation 

of an integrative clustering model

aGene expression data with normalization (e.g., quantile normalization, fragment per kilobase of transcript per million mapped reads 

[FPKM]).
bQuantification of miRNA expression.
cCircular binary segmentation-based copy number segmented means.
dAffymetrix 6.0 SNP arrays.
eProtein quantification by iTRAQ (isobaric Tags for Relative and Absolute Quantification) protein quantification.
fReverse phase protein array (RPPA).
gIllumina Human Methylation arrays.
hIn the SALMON method, the copy number burden (CNB) is calculated using the total gene length (Kb) from SNP 6 data, and the tumor 

mutation burden (TMB) is calculated using the total number of mutated genes reported in Mutation Annotation Format (MAF) files.
iThe LRAcluster method uses somatic mutation data converted into a binary form.
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DNA methylation, and miRNA expression) to compute an 

edge-weighted graph per omics dataset, where nodes rep-

resent samples and edges represent the similarity between 

samples. It then detects a disjoint set of modules for patients 

from multiple omics graphs. MONET was used to conduct 

benchmarking on 287 patients with ovarian serous cystade-

nocarcinoma, and revealed four sample modules represent-

ing venous invasion status and survival rates.

PARADIGM (PAthway Recognition Algorithm using Data 
Integration on Genomic Models)
PARADIGM is a method to identify specific biological path-

ways from a multi-omics dataset (Vaske et al., 2010). It 

combines multi-omics-scale values derived from an individual 

sample with gene activities, products, and an overview of 

the pathway interactions included in the National Cancer 

Institute (NCI) database, which contains information on pro-

tein-protein interactions. PARADIGM utilizes factor graphs 

derived from variables representing the state of various en-

tities (e.g., a specific mRNA molecule or protein complex), 

and then creates probabilistic graphical models. Using these, 

it infers significant and non-significant interactions between 

pathways involving different entities. This tool proved to be 

efficient, and revealed four subtypes of glioblastoma leading 

to significantly different survival outcomes according to the 

perturbated pathways. This result suggests that the cancer 

subtype could be used as a basis to support clinical decisions.

LRAcluster (Low Rank Approximation based multi-omics 
data clustering)
LRAcluster is a multi-omics approach that integrates data 

on somatic mutations, CNVs, DNA methylation, and gene 

expression, and performs low-rank approximation from the 

probabilistic models of various molecular features (Wu et 

al., 2015). All molecular features from the omics datasets 

are transformed into variables and arranged in a parameter 

matrix, which is subject to the low-rank assumption. Next, di-

mension reduction is conducted, revealing clusters associated 

with distinct clinical subtypes. LRAcluster outperformed other 

existing methods in terms of both time and classification ac-

curacy when tested on multi-omics datasets of breast invasive 

carcinoma, colon adenocarcinoma, and lung adenocarcino-

ma (LUAD).

BCC (Bayesian Consensus Clustering)
BCC is a data-driven approach that performs consensus clus-

tering across multi-omics datasets (Lock and Dunson, 2013). 

BCC is based on the finite Dirichlet mixture model to explain 

not only overall consensus clustering, but also important 

features inherent to an individual omics dataset. Given that 

clusters constructed using a single data type are roughly con-

nected, BCC seeks an integrative point for their adherence to 

an overall cluster. BCC was applied to 384 breast cancer pa-

tients from TCGA datasets, including gene expression, DNA 

methylation, and protein data, and effectively revealed three 

cancer subtypes associated with specific clinical features.

LATEST FINDINGS AND IMPLICATIONS IN CANCER 
MULTI-OMICS STUDIES

Cancer research has taken advantage of advances in omics 

technologies from genomics to transcriptomics and of the 

wide range of resources of multiple omics datasets originat-

ing from the same patients. Multi-omics approaches provide 

a unique opportunity to identify the molecular and clinical 

features of cancer patients. In genomics and transcriptom-

ics, there is an unmet need to disentangle incompatibility in 

related biological processes, such as differences in post-trans-

lational modifications or variability in expression profiles 

due to the role of mRNA transcripts in cancer development 

(Greenbaum et al., 2003; Hegde et al., 2003; Tyers and 

Mann, 2003). Recent advances in proteomics through the 

maturation of several mass spectrometry techniques have en-

abled the introduction of proteogenomic approaches, which 

can integrate genomic data with proteomics and information 

on post-translational modifications (e.g., protein phosphory-

lation and acetylation). Large-scale proteogenomic research, 

including that promoted by the CPTAC (Gillette et al., 2020; 

Krug et al., 2020; Mertins et al., 2016; Mun et al., 2019; 

Zhang et al., 2016), has been conducted to unravel new 

biological mechanisms in cancers and provide fundamental 

information on multi-omics approaches for the development 

of integration strategies or computational algorithms.

	 Multi-omics clustering further refined the association be-

tween molecular profiles and clinical features among cancer 

patients (Fig. 2). The identification of coherent subtypes 

across multiple dataset layers could have major implications 

for predicting clinical relevance or therapeutic response re-

gardless of the overall tumor mutational load. Moreover, the 

integration of proteomics datasets enables the identification 

of a direct connection between mutations and phenotypes, 

and therefore increases the resolution of clustering patterns 

across samples. Here, we summarize the latest findings ob-

tained in cancer research using multi-omics approaches.

Lung cancer
Despite extensive research on its mutation signature and 

gene expression landscape, LUAD shows a high level of in-

trinsic or acquired resistance after treatment. Therefore, re-

cent multi-omics-based efforts have been made to integrate 

genomic, transcriptomic, and proteomic datasets and deci-

pher the molecular features underlying durable treatment 

responses.

	 Recently, the CPTAC has conducted a large-scale multi-om-

ics study of LUAD by integrating WES, WGS, RNA-seq, 

miRNA and DNA methylation profiling, and high-resolution 

mass spectrometry-based proteomics, phosphoproteomics, 

and acetylproteomics. Integrative multi-omics clustering 

revealed four clusters of clinical and molecular features. For 

example, the patients in Cluster 1 were mostly TP53 positive 

but STK11 negative, and showed high gene expression in 

proximal inflammatory structures and high CpG methylation. 

In contrast, the patients in Cluster 2 were TP53 negative and 

their transcriptome was enriched in proximal proliferative 

subcluster genes. This multi-omics approach also enabled to 

dissect ethnic differences in the cohort, represented by Clus-
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ter 3 (Vietnamese patients) and Cluster 4 (Chinese patients), 

which exhibited distinct mutation signatures (Gillette et al., 

2020). Moreover, deep-scale proteogenomic studies revealed 

a novel KEAP1/NFE2L2 network mechanism based on cis and 

trans regulation. Driver mutations in KEAP1 did not impact 

the levels of KEAP1 and NFE2L2 transcripts but were highly 

correlated with the phosphorylation of NFE2L2 and low pro-

tein expression of KEAP1. The KEAP1/NFE2L2 heterocomplex 

upregulates the antioxidant pathway to protect cancer cells 

and can be used as a unique biomarker for LUAD.

	 In another large-scale study, Chen et al. (2020) applied 

multi-omics approaches for early-stage, non-smoker patients 

in Taiwan using WES, RNA-seq, and proteomics datasets 

(Chen et al., 2020). Clustering was performed separately for 

proteomics, transcriptomics, and phosphoproteomics data-

sets, and clustering of proteomics data into three subtypes 

was chosen as the best representative of tumor staging and 

driver mutation classification. The largest group, Subtype 1, 

was composed of late-stage tumors (> II) with a high muta-

tion rate, including in TP53. Subtype 2 represented IA- and 

IB-stage patients that did not carry the EGFR-L858R muta-

tion. Finally, early-stage (IA) patients that lacked the TP53 

mutation were classified into Subtype 3. To further decipher 

the biological features of this cohort, these authors construct-

ed protein-protein interaction network models using STRING 

(Search Tool for the Retrieval of Interacting Genes/Proteins) 

(Szklarczyk et al., 2019). The constructed models explained 

the differential regulation of the three subtypes mentioned 

above. It was found that extracellular matrix (ECM)-regulat-

ed pathways, involving the proteins MMP7, MMP11, and 

MMP12, were significantly upregulated in Subtype 1 pa-

tients. Immunohistochemical staining for these three matrix 

metalloproteinases (MMPs) revealed that MMP11 was highly 

associated with patient survival and was a candidate bio-

marker. This study also showed a clear APOBEC signature in 

females, associated with upregulation of DNA damage pro-

teins and phosphosites, implicating putative environmental 

carcinogens in cancer development of non-smoking patients.

Breast cancer
Multi-omics analyses have increased our knowledge of 

breast cancer biology. In particular, integrative analyses have 

revealed the recurrence of mutations in the TP53, PIK3CA, 

and GATA3 genes in breast cancer, but also the presence 

of specific mutations within subtypes, such as PIK3CA mu-

tations in luminal tumors (Cancer Genome Atlas Network, 

2012b). As a result, multi-omics approaches could reveal a 

new subtype of breast cancer that had not been previously 

detected from a single dataset. Similarly, integrated analyses 

revealed the activation of signaling pathways promoting 

HER2 or epidermal growth factor receptor (EGFR) activity. 

Given the observed downstream phosphorylation of EGFR, 

the activation of the HER2 signaling network might reflect 

the need for a treatment strategy tailored to this subgroup 

of patients. Endometrial, colon, and rectal cancers have been 

associated with hypermutation, which might be attributed to 

microsatellite instability, while a new type of instability driven 

by mutations of the POLE gene results in ultra-mutated tu-

mors (Cancer Genome Atlas Network, 2012a). Multi-omics 

analyses have reported MYC-directed activation in aggressive 

colorectal carcinoma. In clear cell renal cell carcinoma, alter-

ations in cellular oxygen sensing and chromatin remodeling/

histone methylation, as well as metabolic shifts in the tricar-

boxylic acid (TCA) cycle, have been observed, and might be 

Fig. 2. Latest findings in cancer multi-omics research. Multi-omics approaches integrate various high-throughput sequencing datasets 

across a range of molecular layers. Biological features are subject to multi-view clustering methods and account for distinct subtypes of 

cancer patients based on relevant clinical features.
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key processes in the pathology of this cancer type (Cancer 

Genome Atlas Research Network, 2013). 

	 An integrative analysis of gene expression and proteomics 

has been applied to the survival data of ERBB2-positive pa-

tients, and revealed breast tumors with acquired resistance to 

lapatinib and ability to block EGFR/ERBB2 signaling (Komurov 

et al., 2012). Nonetheless, an increase in glucose metabolism, 

unfolded protein response, and endoplasmic reticulum (ER) 

stress pathways reduced the ability of lapatinib to induce cell 

death. Arguably, this might imply that targeting both meta-

bolic and signaling networks may improve patient outcomes 

(Csibi et al., 2013; Komurov et al., 2012).

	 A recent study on 122 patients integrating data on muta-

tions, mRNA expression, protein expression, and post-trans-

lational modifications (phosphorylation and acetylation) has 

yielded robust profiles to elucidate the biological features of 

breast cancer (Krug et al., 2020). The resulting subtypes, that 

is, the basal-inclusive, HER2-inclusive, LumA-inclusive, and 

LumB-inclusive subtypes, were similar to those generated by 

the already existing and widely used PAM50 assay but re-

vealed hidden biological structures such as the status of the 

ERBB2 amplicon, stratified by proteomics assessment; the RB 

status, which is deeply related to the CDK4/6 inhibitor; and 

post-translational cross-linkage between proteins involved 

in cytoplasmic and mitochondrial metabolic pathways. The 

acetylproteome was found to be useful for distinguishing 

cancers into luminally and basally enriched subtypes, based 

on their metabolic activity.

Gastric cancer
Multi-omics research on gastric cancers revealed four sub-

types: 1) an Epstein–Barr virus subtype with recurrent PIK3CA 

mutations, 2) a microsatellite-unstable subtype with a high 

mutation rate, 3) a genomically stable type enriched in a 

diffuse histological variant, and 4) a chromosomally unsta-

ble type with aneuploidy and focal amplification of receptor 

tyrosine kinases (Cancer Genome Atlas Research Network, 

2014). A recent proteogenomic study of early-onset gastric 

cancer revealed four subtypes through integrated analysis; 

moreover, phosphorylation data supported the classification 

into four subtypes and provided information about active 

signaling pathways (Mun et al., 2019). The authors of this 

study applied a network propagation method to mutation 

and phosphorylation data and calculated two types of net-

work-smoothed scores. Two functionally related cellular 

processes, affiliated with gastric cancer pathogenesis, were 

identified using network-smoothed scores for pairs of mu-

tated genes and phosphorylated proteins. The first cellular 

process was represented by Notch and caspase signaling with 

mutated genes and phosphorylated proteins. The second 

cellular process was associated with MAPK, AMPK, FOXO, 

mTOR, and T-cell receptor signaling. Therefore, multi-omics 

approaches enable the discovery of various subtypes of gas-

tric cancer, thereby allowing a comprehensive understanding 

of patient stratification and suggesting novel possibilities for 

personalized targeted therapy.

Glioblastoma
In highly characterized samples of glioblastoma patients, a 

multi-omics approach has delineated core transcriptional 

factors (CEBP and STAT3) that widely regulate mesenchymal 

transformation in glioblastoma (Carro et al., 2010). Integra-

tive analyses of gene expression and phosphoproteomes 

have identified several cellular features that respond to stress 

and growth factors (Hill et al., 2012; Huang et al., 2013), 

are key regulators of the EGFR signaling pathway, and are 

associated with patient survival outcomes (Amit et al., 2007). 

Similarly, combining proteomic and metabolomic profiles also 

revealed a unique regulatory function in a cellular network 

of stress and growth factors (Bordbar et al., 2012). Dekker et 

al. (2020) conducted an integrative multi-omics analysis of 

gene and protein expression, as well as phosphoproteomic 

profiles, using paired primary recurrent tissue samples from 

eight glioblastoma patients (Dekker et al., 2020). Half of the 

patients showed a marked difference in the phosphorylation 

of STMN1 (S38), a component of the ERBB4 signaling path-

way.

Acute myeloid leukemia
Integrating methylation profiles with genomic and tran-

scriptomic datasets can substantiate the utility of studying 

acute myeloid leukemia (AML). A multi-omics analysis of 200 

adult patients with AML showed distinct gene expression 

and methylation patterns across samples (Cancer Genome 

Atlas Research Network et al., 2013b). In particular, CpG-

sparse regions showed a marked difference in methylation 

due to gene mutations. AML cells with IDH1 and IDH2 

mutations exhibited more extensive methylation than nor-

mal CD34+CD38- cells, whereas AML cells with MLL fusions 

or co-occurring NPM1, DNMT3A, and FLT3 mutations were 

related to loss of DNA methylation.

Pancreatic ductal adenocarcinoma
A multi-omics approach has also been applied to pancreatic 

ductal adenocarcinoma (PDAC) by integrating omics profiling 

of 150 patients for mutations, gene expression (mRNA, miR-

NA, and long non-coding RNA [lncRNA]), DNA methylation, 

and protein expression (Cancer Genome Atlas Research Net-

work, 2017). KRAS mutational heterogeneity and signatures 

of individual pancreatic cancers have been identified, indicat-

ing the existence of distinct molecular subtypes of pancreatic 

cancer. For multi-omics clustering, the SNF method was 

applied to mRNA, miRNA, and DNA methylation data, and 

allowed to identify three clusters, which are mostly associated 

with tumor purity and gene expression signatures. This pro-

vides insights into the importance of considering neoplastic 

cellularity for further analysis of PDAC and the need for mo-

lecular characterization platforms to further stratify samples.

ADVANCES IN DRUG TARGET DISCOVERY USING 
CANCER MULTI-OMICS

Drug target discovery is a critical step in the development of 

cancer drugs and personalized therapeutics. In traditional 

drug target discovery, biomolecules with a confirmed mecha-

nism of action are selected through a series of studies, which 

require enormous manpower (Lindsay, 2003; Paananen and 

Fortino, 2020). Over the last decade, putative drug targets 
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have been identified through the latest high-throughput 

genomic approaches in combination with experimental vali-

dation, including overexpression or knockdown by RNAi and 

the use of transgenic animals and model organisms (Benson 

et al., 2006). Multi-omics is an interdisciplinary approach to 

study biological characteristics, and can comprehensively yield 

many drug target candidates in a cost-effective manner. The 

analysis of 14 cancer subtypes from TCGA multi-omics data-

sets revealed 40 driver genes associated with the Wnt, Notch, 

Hedgehog, JAK/STAT, NK-KB, and MAPK signaling pathways 

(Chen et al., 2014). Among them, well-known driver genes 

such as EGFR, ERBB2, PIK3CA, and KRAS were confirmed 

to be upregulated in several cancers, and DCUN1D1 and 

NSD3 were identified as new diver genes. Along with the 

success of trastuzumab (an agent targeting HER2), the use of 

multi-omics approaches for the discovery of new druggable 

targets in breast cancer has emerged. A recent proteomic 

analysis of 105 breast cancer patients has elucidated the as-

sociation of this cancer type with CDK12, PAK1, PTK2, RIPK2, 

and TLK2 amplicons, and highlighted the overexpression of 

EGFR following the loss of CETN3 and SKP1 (Mertins et al., 

2016). Progress has also been made with regard to tumor 

metabolites. Jain et al. (2012) detected consumption and 

release (CORE) profiles of 219 metabolites from NCI-60 cell 

lines. After the integrated analysis of CORE profiles with gene 

expression data, these authors demonstrated that glycine 

consumption and upregulation of the mitochondrial glycine 

biosynthetic pathway were highly correlated with the prolif-

eration of cancer cells.

	 Multi-omics approaches may allow systematic assessment 

of drug discovery for personalized cancer therapy and im-

prove the efficacy of chemotherapy (Aguirre et al., 2018; Li 

et al., 2013; Pauli et al., 2017). Refining molecular-defined 

subsets of patients can provide information on drug response 

and resistance, which vary among patients. Cui et al. (2020) 

integrated the expression of lncRNA, miRNA, mRNA, methyl-

ation, and the profile of somatic mutations with the expres-

sion of drug response-related lncRNAs. These authors found 

that lncRNAs respond to diverse chemotherapeutic drugs and 

characterized some key lncRNAs, such as HOXA-AS2, which 

mediate resistance to the drug adriamycin in BRCA patients 

(Cui et al., 2020). Another proteogenomic study of breast 

cancer found that triple-negative BRCA (TNBC) tumors with 

RB1 mutations or deletions are resistant to the CDK4/6 inhib-

itor palbociclib, unlike wild-type TNBC. However, most of the 

TNBC samples showed a small level of RB protein expression 

along with that of the wild-type RB1 gene. Based on previous 

findings, the Genomics of Drug Sensitivity in Cancer (GDSC) 

data analysis showed that the response to palbociclib was 

correlated with the total amount of RB protein, regardless 

of the RB1 genotype. An exception to this is that the I388S, 

P515L, and N480 (in-frame) mutations of the RB1 gene led 

to poor palbociclib response (Krug et al., 2020). Collectively, 

these studies indicate that multi-omics analysis can unravel 

new biological characteristics and enable to discover drug tar-

gets that cannot be pinpointed based on single-omics data.

CONCLUDING REMARKS

In this review, we introduce computational methods for 

multi-omics studies and report the latest findings in cancer 

research based on them. Multi-omics approaches can fully 

characterize the intersection between different layers of 

quantitative information, systematically summarizing biolog-

ical interactions from an individual cell or tissue to an individ-

ual patient with a primary tumor and possible metastases. In 

addition, such integration can reflect the molecular charac-

teristics of tumors at various levels, from genes to proteins, 

and different cancer stages through multidisciplinary analysis.

	 Multi-omics approaches may hold the potential to study 

different cancer types with a high level of similarity, in terms 

of molecular characteristics, to basal-like breast cancer, high-

grade serous ovarian cancer, and serous endometrial cancer 

(Cancer Genome Atlas Research Network et al., 2013a). A 

systems approach integrating multi-omics data is key to un-

derstanding cancer biology and investigating the molecular 

pathogenesis of cancer. Multi-omics data analysis across 

tumor types can identify molecular characteristics commonly 

underlying a range of cancer types and further detail patient 

subgroups as well as the molecular classification of cancer 

subtypes.

	 Therefore, multiple data layers, including genomics, tran-

scriptomics, epigenomics, and proteomics datasets, are 

required to fully represent the molecular and clinical struc-

tures of cancer patients. The generation of high-quality and 

unbiased datasets is a critical part of multi-omics approaches. 

In addition, further studies should consider proper integra-

tion methods and computational algorithms for robust and 

systematic assessment to obtain solid findings and predictive 

models.
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