과제정보
This research was supported by the National Natural Science Foundation of China (81772887). Jiangsu Provincial Medical Innovation Team (CXTDA2017036), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, 2018-87), Jiangsu Provincial Medical Youth Talent (QNRC2016854), and Natural Science Foundation of Jiangsu Province of China (BK20171488).
참고문헌
- Aichem, A. and Groettrup, M. (2016). The ubiquitin-like modifier FAT10 in cancer development. Int. J. Biochem. Cell Biol. 79, 451-461. https://doi.org/10.1016/j.biocel.2016.07.001
- Awasthee, N., Rai, V., Chava, S., Nallasamy, P., Kunnumakkara, A.B., Bishayee, A., Chauhan, S.C., Challagundla, K.B., and Gupta, S.C. (2019). Targeting IkappaappaB kinases for cancer therapy. Semin. Cancer Biol. 56, 12-24. https://doi.org/10.1016/j.semcancer.2018.02.007
- Bai, Y., Sha, J., and Kanno, T. (2020). The role of carcinogenesisrelated biomarkers in the Wnt pathway and their effects on epithelialmesenchymal transition (EMT) in oral squamous cell carcinoma. Cancers (Basel) 12, 555. https://doi.org/10.3390/cancers12030555
- Bialas, J., Boehm, A.N., Catone, N., Aichem, A., and Groettrup, M. (2019). The ubiquitin-like modifier FAT10 stimulates the activity of deubiquitylating enzyme OTUB1. J. Biol. Chem. 294, 4315-4330. https://doi.org/10.1074/jbc.ra118.005406
- Cappadocia, L. and Lima, C.D. (2018). Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem. Rev. 118, 889-918. https://doi.org/10.1021/acs.chemrev.6b00737
- Chai, A.W.Y., Lim, K.P., and Cheong, S.C. (2020). Translational genomics and recent advances in oral squamous cell carcinoma. Semin. Cancer Biol. 61, 71-83. https://doi.org/10.1016/j.semcancer.2019.09.011
- Choi, Y., Kim, J.K., and Yoo, J.Y. (2014). NFkappaB and STAT3 synergistically activate the expression of FAT10, a gene counteracting the tumor suppressor p53. Mol. Oncol. 8, 642-655. https://doi.org/10.1016/j.molonc.2014.01.007
- Chu, W., Song, X., Yang, X., Ma, L., Zhu, J., He, M., Wang, Z., and Wu, Y. (2014). Neuropilin-1 promotes epithelial-to-mesenchymal transition by stimulating nuclear factor-kappa B and is associated with poor prognosis in human oral squamous cell carcinoma. PLoS One 9, e101931. https://doi.org/10.1371/journal.pone.0101931
- Deng, X., Deng, J., Yi, X., Zou, Y., Liu, H., Li, C., Deng, B., Fan, H., and Hao, L. (2020). Ubiquitin-like protein FAT10 promotes osteosarcoma glycolysis and growth by upregulating PFKFB3 via stabilization of EGFR. Am. J. Cancer Res. 10, 2066-2082.
- Derakhshan, A., Chen, Z., and Van Waes, C. (2017). Therapeutic small molecules target inhibitor of apoptosis proteins in cancers with deregulation of extrinsic and intrinsic cell death pathways. Clin. Cancer Res. 23, 1379-1387. https://doi.org/10.1158/1078-0432.CCR-16-2172
- Eluard, B., Thieblemont, C., and Baud, V. (2020). NF-kappaB in the new era of cancer therapy. Trends Cancer 6, 677-687. https://doi.org/10.1016/j.trecan.2020.04.003
- Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., and Parkin, D.M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127, 2893-2917. https://doi.org/10.1002/ijc.25516
- Gao, Y., Theng, S.S., Zhuo, J., Teo, W.B., Ren, J., and Lee, C.G. (2014). FAT10, an ubiquitin-like protein, confers malignant properties in non-tumorigenic and tumorigenic cells. Carcinogenesis 35, 923-934. https://doi.org/10.1093/carcin/bgt407
- Groettrup, M., Pelzer, C., Schmidtke, G., and Hofmann, K. (2008). Activating the ubiquitin family: UBA6 challenges the field. Trends Biochem. Sci. 33, 230-237. https://doi.org/10.1016/j.tibs.2008.01.005
- Harris, J., Oliere, S., Sharma, S., Sun, Q., Lin, R., Hiscott, J., and Grandvaux, N. (2006). Nuclear accumulation of cRel following C-terminal phosphorylation by TBK1/IKK epsilon. J. Immunol. 177, 2527-2535. https://doi.org/10.4049/jimmunol.177.4.2527
- Harsha, C., Banik, K., Ang, H.L., Girisa, S., Vikkurthi, R., Parama, D., Rana, V., Shabnam, B., Khatoon, E., Kumar, A.P., et al. (2020). Targeting AKT/mTOR in oral cancer: mechanisms and advances in clinical trials. Int. J. Mol. Sci. 21, 3285. https://doi.org/10.3390/ijms21093285
- Hayden, M.S. and Ghosh, S. (2012). NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 26, 203-234. https://doi.org/10.1101/gad.183434.111
- Ishida, K., Tomita, H., Nakashima, T., Hirata, A., Tanaka, T., Shibata, T., and Hara, A. (2017). Current mouse models of oral squamous cell carcinoma: genetic and chemically induced models. Oral Oncol. 73, 16-20. https://doi.org/10.1016/j.oraloncology.2017.07.028
- Kaltschmidt, B., Greiner, J.F.W., Kadhim, H.M., and Kaltschmidt, C. (2018). Subunit-specific role of NF-kappaB in cancer. Biomedicines 6, 44. https://doi.org/10.3390/biomedicines6020044
- Kawamoto, A., Nagata, S., Anzai, S., Takahashi, J., Kawai, M., Hama, M., Nogawa, D., Yamamoto, K., Kuno, R., Suzuki, K., et al. (2019). Ubiquitin D is upregulated by synergy of Notch signalling and TNF-alpha in the inflamed intestinal epithelia of IBD patients. J. Crohns Colitis 13, 495-509. https://doi.org/10.1093/ecco-jcc/jjy180
- King, K.E., Ponnamperuma, R.M., Allen, C., Lu, H., Duggal, P., Chen, Z., Van Waes, C., and Weinberg, W.C. (2008). The p53 homologue DeltaNp63alpha interacts with the nuclear factor-kappaB pathway to modulate epithelial cell growth. Cancer Res. 68, 5122-5131. https://doi.org/10.1158/0008-5472.CAN-07-6123
- Liu, X., Ge, J., Chen, C., Shen, Y., Xie, J., Zhu, X., Liu, M., Hu, J., Chen, L., Guo, L., et al. (2021). FAT10 protects against ischemia-induced ventricular arrhythmia by decreasing Nedd4-2/Nav1.5 complex formation. Cell Death Dis. 12, 25. https://doi.org/10.1038/s41419-020-03290-3
- Luo, C., Xiong, H., Chen, L., Liu, X., Zou, S., Guan, J., and Wang, K. (2018). GRP78 promotes hepatocellular carcinoma proliferation by increasing FAT10 expression through the NF-kappaB pathway. Exp. Cell Res. 365, 1-11. https://doi.org/10.1016/j.yexcr.2018.02.007
- Mortezaee, K., Najafi, M., Farhood, B., Ahmadi, A., Shabeeb, D., and Musa, A.E. (2019). NF-kappaB targeting for overcoming tumor resistance and normal tissues toxicity. J. Cell. Physiol. 234, 17187-17204. https://doi.org/10.1002/jcp.28504
- Neumann, M. and Naumann, M. (2007). Beyond IkappaBs: alternative regulation of NF-kappaB activity. FASEB J. 21, 2642-2654. https://doi.org/10.1096/fj.06-7615rev
- Panarese, I., Aquino, G., Ronchi, A., Longo, F., Montella, M., Cozzolino, I., Roccuzzo, G., Colella, G., Caraglia, M., and Franco, R. (2019). Oral and oropharyngeal squamous cell carcinoma: prognostic and predictive parameters in the etiopathogenetic route. Expert Rev. Anticancer Ther. 19, 105-119. https://doi.org/10.1080/14737140.2019.1561288
- Patel, S., Shah, K., Mirza, S., Daga, A., and Rawal, R. (2015). Epigenetic regulators governing cancer stem cells and epithelial-mesenchymal transition in oral squamous cell carcinoma. Curr. Stem Cell Res. Ther. 10, 140-152. https://doi.org/10.2174/1574888X09666141020163700
- Petersen, P.E. (2009). Oral cancer prevention and control--the approach of the World Health Organization. Oral Oncol. 45, 454-460. https://doi.org/10.1016/j.oraloncology.2008.05.023
- Qing, X., French, B.A., Oliva, J., and French, S.W. (2011). Increased expression of FAT10 in colon benign, premalignant and malignant epithelial neoplasms. Exp. Mol. Pathol. 90, 51-54. https://doi.org/10.1016/j.yexmp.2010.09.005
- Siriwardena, S., Tsunematsu, T., Qi, G., Ishimaru, N., and Kudo, Y. (2018). Invasion-related factors as potential diagnostic and therapeutic targets in oral squamous cell carcinoma-a review. Int. J. Mol. Sci. 19, 1462. https://doi.org/10.3390/ijms19051462
- Sovak, M.A., Bellas, R.E., Kim, D.W., Zanieski, G.J., Rogers, A.E., Traish, A.M., and Sonenshein, G.E. (1997). Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest. 100, 2952-2960. https://doi.org/10.1172/JCI119848
- Steinbichler, T.B., Savic, D., Dudas, J., Kvitsaridze, I., Skvortsov, S., Riechelmann, H., and Skvortsova, I.I. (2020). Cancer stem cells and their unique role in metastatic spread. Semin. Cancer Biol. 60, 148-156. https://doi.org/10.1016/j.semcancer.2019.09.007
- Tampa, M., Mitran, M.I., Mitran, C.I., Sarbu, M.I., Matei, C., Nicolae, I., Caruntu, A., Tocut, S.M., Popa, M.I., Caruntu, C., et al. (2018). Mediators of inflammation - a potential source of biomarkers in oral squamous cell carcinoma. J. Immunol. Res. 2018, 1061780. https://doi.org/10.1155/2018/1061780
- Terzuoli, E., Bellan, C., Aversa, S., Ciccone, V., Morbidelli, L., Giachetti, A., Donnini, S., and Ziche, M. (2019). ALDH3A1 overexpression in melanoma and lung tumors drives cancer stem cell expansion, impairing immune surveillance through enhanced PD-L1 output. Cancers (Basel) 11, 1963. https://doi.org/10.3390/cancers11121963
- Wang, F. and Zhao, B. (2019). UBA6 and its bispecific pathways for ubiquitin and FAT10. Int. J. Mol. Sci. 20, 2250. https://doi.org/10.3390/ijms20092250
- Wang, Z., Chen, J., Zhang, W., Zheng, Y., Wang, Z., Liu, L., Wu, H., Ye, J., Zhang, W., Qi, B., et al. (2016). Axon guidance molecule semaphorin3A is a novel tumor suppressor in head and neck squamous cell carcinoma. Oncotarget 7, 6048-6062. https://doi.org/10.18632/oncotarget.6831
- Wang, Z., Zhu, W.G., and Xu, X. (2017). Ubiquitin-like modifications in the DNA damage response. Mutat. Res. 803-805, 56-75. https://doi.org/10.1016/j.mrfmmm.2017.07.001
- Wilken, R., Veena, M.S., Wang, M.B., and Srivatsan, E.S. (2011). Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10, 12. https://doi.org/10.1186/1476-4598-10-12
- Xia, Y., Shen, S., and Verma, I.M. (2014). NF-kappaB, an active player in human cancers. Cancer Immunol. Res. 2, 823-830. https://doi.org/10.1158/2326-6066.CIR-14-0112
- Xiang, S., Shao, X., Cao, J., Yang, B., He, Q., and Ying, M. (2020). FAT10: function and relationship with cancer. Curr. Mol. Pharmacol. 13, 182-191. https://doi.org/10.2174/1874467212666191113130312
- Xue, F., Zhu, L., Meng, Q.W., Wang, L., Chen, X.S., Zhao, Y.B., Xing, Y., Wang, X.Y., and Cai, L. (2016). FAT10 is associated with the malignancy and drug resistance of non-small-cell lung cancer. Onco Targets Ther. 9, 4397-4409. https://doi.org/10.2147/OTT.S98410
- Yan, J., Lei, J., Chen, L., Deng, H., Dong, D., Jin, T., Liu, X., Yuan, R., Qiu, Y., Ge, J., et al. (2018). Human leukocyte antigen F locus adjacent transcript 10 overexpression disturbs WISP1 protein and mRNA expression to promote hepatocellular carcinoma progression. Hepatology 68, 2268-2284. https://doi.org/10.1002/hep.30105
- Yang, H., Kuo, Y.H., Smith, Z.I., and Spangler, J. (2021). Targeting cancer metastasis with antibody therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021 Jan 18 [Epub]. https://doi.org/10.1002/wnan.1698
- Yang, L., Shi, P., Zhao, G., Xu, J., Peng, W., Zhang, J., Zhang, G., Wang, X., Dong, Z., Chen, F., et al. (2020). Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther. 5, 8. https://doi.org/10.1038/s41392-020-0110-5
- Yanjia, H. and Xinchun, J. (2007). The role of epithelial-mesenchymal transition in oral squamous cell carcinoma and oral submucous fibrosis. Clin. Chim. Acta 383, 51-56. https://doi.org/10.1016/j.cca.2007.04.014
- Yuan, J., Tu, Y., Mao, X., He, S., Wang, L., Fu, G., Zong, J., and Zhang, Y. (2012). Increased expression of FAT10 is correlated with progression and prognosis of human glioma. Pathol. Oncol. Res. 18, 833-839. https://doi.org/10.1007/s12253-012-9511-2
- Yuan, R., Wang, K., Hu, J., Yan, C., Li, M., Yu, X., Liu, X., Lei, J., Guo, W., Wu, L., et al. (2014). Ubiquitin-like protein FAT10 promotes the invasion and metastasis of hepatocellular carcinoma by modifying beta-catenin degradation. Cancer Res. 74, 5287-5300.
- Zamo, A., Malpeli, G., Scarpa, A., Doglioni, C., Chilosi, M., and Menestrina, F. (2005). Expression of TP73L is a helpful diagnostic marker of primary mediastinal large B-cell lymphomas. Mod. Pathol. 18, 1448-1453. https://doi.org/10.1038/modpathol.3800440
- Zhou, X., Liu, S., Cai, G., Kong, L., Zhang, T., Ren, Y., Wu, Y., Mei, M., Zhang, L., and Wang, X. (2015). Long non coding RNA MALAT1 promotes tumor growth and metastasis by inducing epithelial-mesenchymal transition in oral squamous cell carcinoma. Sci. Rep. 5, 15972. https://doi.org/10.1038/srep15972
- Zielinska, K.A. and Katanaev, V.L. (2019). Information theory: new look at oncogenic signaling pathways. Trends Cell Biol. 29, 862-875. https://doi.org/10.1016/j.tcb.2019.08.005
- Zou, Y., Du, Y., Cheng, C., Deng, X., Shi, Z., Lu, X., Hu, H., Qiu, J., and Jiang, W. (2021). FAT10 promotes the progression of bladder cancer by upregulating HK2 through the EGFR/AKT pathway. Exp. Cell Res. 398, 112401. https://doi.org/10.1016/j.yexcr.2020.112401