DOI QR코드

DOI QR Code

키토산 첨가 수산화칼슘 근관 충전재의 Enterococcus Faecalis에 대한 항균 효과 및 물리적 성질

Antibacterial Effect on Enterococcus Faecalis and Physical Properties of Chitosan Added Calcium Hydroxide Canal Filling Material

  • 송솔 (단국대학교 치과대학 소아치과학교실) ;
  • 김유진 (단국대학교 치과대학 생체재료학교실) ;
  • 이정환 (단국대학교 치과대학 생체재료학교실) ;
  • 이준행 (단국대학교 치과대학 소아치과학교실) ;
  • 신지선 (단국대학교 치과대학 소아치과학교실) ;
  • 김종빈 (단국대학교 치과대학 소아치과학교실)
  • Song, Sol (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Kim, Yu-Jin (Department of Biomaterials Science, College of Dentistry, Dankook University) ;
  • Lee, Jung-Hwan (Department of Biomaterials Science, College of Dentistry, Dankook University) ;
  • Lee, Joonhaeng (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Shin, Jisun (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Kim, Jongbin (Department of Pediatric Dentistry, College of Dentistry, Dankook University)
  • 투고 : 2020.12.27
  • 심사 : 2021.01.20
  • 발행 : 2021.05.31

초록

이 연구의 목적은 키토산 첨가 수산화칼슘 근관 충전재의Enterococcus Faecalis에 대한 항균 효과 및 물리적 성질을 알아보는 것이다. 저, 중, 고분자량의 키토산 분말을 수산화칼슘 근관 충전재와 혼합하였고, 각 분자량 별로 키토산 분말을 1.0, 2.0, 5.0 wt%로 첨가하였다. E. faecalis를 배양하여 1 × 106 CFU/ml로 조정하였다. 항균 효과 실험을 위해 2.0 wt% 키토산의 3가지 다른 분자량, 3가지 다른 농도의 고분자량 키토산을 수산화칼슘 근관 충전재와 혼합하였다. 기준 파장 600 nm인 570 nm에서 분광광도계를 이용하여 상층액의 흡광도를 측정하였다. 유동성, 피막도 및 방사선 불투과성은 ISO 6876 : 2012에 의거하여 측정하였다. 키토산을 포함하는 모든 분자량 유형의 실험군은 키토산을 첨가하지 않은 대조군에 비해 E. faecalis 성장 억제 효과를 보였다. 고분자량 키토산 첨가 군에서 가장 좋은 항균 효과를 보였다(p < 0.05). 또한 키토산 첨가량이 감소할수록 항균 효과도 감소하였다(p < 0.05). 키토산을 함유하는 수산화칼슘 근관 충전재의 모든 분자량 군은 키토산 함량의 증가 따라 유동성 및 방사선 불투과성이 감소하고 피막도가 증가하는 경향을 보였다. 1.0 wt% 저분자량 키토산의 첨가는 기존 수산화칼슘 근관 충전재와 비교하여 물성에 큰 차이를 보이지 않았다. 연구 결과를 종합하였을 때, 수산화칼슘 근관 충전재에 첨가하여 항균성 강화와 적절한 물성을 얻기 위해선 2.0 wt%의 키토산 분말의 첨가가 적정하다. 키토산의 항균 효과를 고려할 때, 키토산의 근관 치료 및 소아치과 분야에서의 적용을 위한 추가적인 연구가 필요할 것으로 사료되었다.

The aim of this study was to evaluate the antibacterial effect on Enterococcus Faecalis and physical properties of chitosan added calcium hydroxide canal filling material. Low, medium, high molecular weights of chitosan powder were mixed with calcium hydroxide canal filling material. Also, for each molecular weight group, 1.0, 2.0, 5.0 wt% of chitosan powder were added. An overnight culture of E. faecalis was adjusted to 1 × 106 CFU/ml. For test of antibacterial effect, three different molecular weights of 2.0 wt% chitosan and three different concentrations of high molecular weight chitosan were mixed with calcium hydroxide canal filling material. The absorbance of plates was analyzed using spectrophotometer at 570 nm with a reference wavelength of 600 nm. Physical properties such as flow, film thickness and radiopacity were examined according to ISO 6876 : 2012. All molecular weight type of chitosan containing material showed inhibitory effect against E. faecalis growth compared to non-chitosan added calcium hydroxide canal filling material group (p < 0.05). High molecular weight chitosan containing material showed the most antibacterial effect. Also, the antibacterial effect decreased as the incorporated amount of chitosan decreased (p < 0.05). Every molecular weight group of material containing chitosan had a tendency for reduced flow and radiopacity, increased film thickness according to amount of chitosan. Low molecular weight of 1.0 wt% chitosan addition did not show any significant difference of physical properties compared to conventional calcium hydroxide canal filling material. In conclusion, for reinforcement of antibacterial effect against E. faecalis and for favorable physical properties, 2.0 wt% of chitosan adding is recommended. Considering its antibacterial effect of chitosan, further studies are required for clinical application of chitosan in endodontics and pediatric dentistry.

키워드

참고문헌

  1. Cordeiro MM, Rocha MJ : The effects of periradicular inflamation and infection on a primary tooth and permanent successor. J Clin Pediatr Dent, 29:193-200, 2005. https://doi.org/10.17796/jcpd.29.3.5238p10v21r2j162
  2. Reddy S, Ramakrishna Y : Evaluation of antimicrobial efficacy of various root canal filling materials used in primary teeth: a microbiological study. J Clin Pediatr Dent, 31:193-198, 2007. https://doi.org/10.17796/jcpd.31.3.t73r4061424j2578
  3. Amorim Lde F, Toledo OA, Estrela C, et al. : Antimicrobial analysis of different root canal filling pastes used in pediatric dentistry by two experimental methods. Braz Dent J, 17:317-322, 2006. https://doi.org/10.1590/S0103-64402006000400010
  4. Tchaou WS, Turng BF, Minah GE, Coll JA : In vitro inhibition of bacteria from root canals of primary teeth by various dental materials. Pediatr Dent, 17:351-355, 1995.
  5. Harini Priya M, Bhat SS, Sundeep Hegde K : Comparative evaluation of bactericidal potential of four root canal filling materials against microflora of infected non-vital primary teeth. J Clin Pediatr Dent, 35:23-29, 2010. https://doi.org/10.17796/jcpd.35.1.u57p4500360g2752
  6. Nurko C, Garcia-Godoy F : Evaluation of a calcium hydroxide/iodoform paste (Vitapex) in root canal therapy for primary teeth. J Clin Pediatr Dent, 23:289-294, 1999.
  7. Desai S, Chandler N : Calcium hydroxide-based root canal sealers: a review. J Endod, 35:475-480, 2009. https://doi.org/10.1016/j.joen.2008.11.026
  8. Thomas AM, Chandra S, Chandra S, Pandey RK : Elimination of infection in pulpectomized deciduous teeth: a short-term study using iodoform paste. J Endod, 20:233-235, 1994. https://doi.org/10.1016/S0099-2399(06)80284-0
  9. Ding SJ, Kao CT, Huang TH, et al. : The physical and cytological properties of white MTA mixed with Na2HPO4 as an accelerant. J Endod, 34:748-751, 2008. https://doi.org/10.1016/j.joen.2008.02.041
  10. Wang N, Ji Y, Wang S, et al. : Antibacterial effect of chitosan and its derivative on Enterococcus faecalis associated with endodontic infection. Exp Ther Med, 19:3805-3813, 2020.
  11. Uragami T, Yamamoto S, Miyata T : Dehydration from alcohols by polyion complex cross-linked chitosan composite membranes during evapomeation. Biomacromolecules, 4:137-144, 2003. https://doi.org/10.1021/bm025642o
  12. Supotngarmkul A, Panichuttra A, Matangkasombut O, et al. : Antibacterial property of chitosan against E. faecalis standard strain and clinical isolates. Dent Mater J, 39:456-463, 2020. https://doi.org/10.4012/dmj.2018-343
  13. No HK, Park NY, Lee SH, Meyers SP : Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol, 74:65-72, 2002. https://doi.org/10.1016/S0168-1605(01)00717-6
  14. Goy RC, Britto DD, Assis OB : A review of the antimicrobial activity of chitosan. Polimeros, 19:241-247, 2009. https://doi.org/10.1590/S0104-14282009000300013
  15. Estrela C, Estrela CR, Silva JA, et al. : Antimicrobial efficacy of ozonated water, gaseous ozone, sodium hypochlorite and chlorhexidine in infected human root canals. Int Endod J, 40:85-93, 2007. https://doi.org/10.1111/j.1365-2591.2006.01185.x
  16. Cogulu D, Uzel A, Oncag O, Eronat C : PCR-based identification of selected pathogens associated with endodontic infections in deciduous and permanent teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 106:443-449, 2008. https://doi.org/10.1016/j.tripleo.2008.03.004
  17. International Organization for Standardization : ISO 6876:2012 Dentistry - Root canal sealing materials. Available from URL: https://www.iso.org/standard/45117.html (Accessed on July 21, 2020).
  18. Hungaro Duarte MA, de Oliveira El Kadre GD, de Moraes IG, et al. : Radiopacity of portland cement associated with different radiopacifying agents. J Endod, 35:737-740, 2009. https://doi.org/10.1016/j.joen.2009.02.006
  19. Siqueira JF Jr : Aetiology of root canal treatment failure: why well-treated teeth can fail. Int Endod J, 34:1-10, 2001. https://doi.org/10.1046/j.1365-2591.2001.00396.x
  20. Evans M, Davies JK, Sundqvist G, Figdor D : Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. Int Endod J, 35:221-228, 2002. https://doi.org/10.1046/j.1365-2591.2002.00504.x
  21. Rocas IN, Jung IY, Lee CY, Siqueira JF Jr : Polymerase chain reaction identification of microorganisms in previously root-filled teeth in a South Korean population. J Endod, 30:504-508, 2004. https://doi.org/10.1097/00004770-200407000-00011
  22. Punathil S, Bhat SS, Bhat SV, Hegde SK : Microbiolgical analysis of root canal flora of failed pulpectomy in primary teeth. Int J Curr Microbiol App Sci, 3:241-246, 2014.
  23. Mortazavi M, Mesbahi M : Comparison of zinc oxide and eugenol, and Vitapex for root canal treatment of necrotic primary teeth. Int J Paediatr Dent, 14:417-424, 2004. https://doi.org/10.1111/j.1365-263X.2004.00544.x
  24. Li Q, Dunn ET, Grandmason EW, Goosen MFA : In Applications and properties of chitosan. J Bioact Compat Polym, 7:370-397, 1992. https://doi.org/10.1177/088391159200700406
  25. Kmiec M, Pighinelli L, Reis V, et al. : Chitosan-properties and applications in dentistry. J Adv Tissue Eng Regen Med, 2:35-41, 2017.
  26. Shenoi PR, Morey ES, Wanmali SS, et al. : In vitro evaluation of the antimicrobial efficacy of chitosan and other endodontic irrigants against Enterococcus faecalis. Gen Dent, 64:60-63, 2016.
  27. Shrestha A, Shi Z, Neoh KG, Kishen A : Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod, 36:1030-1035, 2010. https://doi.org/10.1016/j.joen.2010.02.008
  28. Hosseinnejad M, Jafari SM : Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol, 85:467-475, 2016. https://doi.org/10.1016/j.ijbiomac.2016.01.022
  29. Chen YM, Chung YC, Li SY, et al. : Antibacterial properties of chitosan in waterborne pathogen. J Environ Sci Health A Tox Hazard Subst Environ Eng, 37:1379-1390, 2002. https://doi.org/10.1081/ESE-120005993
  30. Kim JS, Shin DH : Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin. Restor Dent Endod, 38:36-42, 2013. https://doi.org/10.5395/rde.2013.38.1.36
  31. Liu N, Chen XG, Yu LJ, et al. : Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. J Carbohydr Polym, 64:60-65, 2006. https://doi.org/10.1016/j.carbpol.2005.10.028
  32. Lim SH, Hudson SM : Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res, 339:313-319, 2004. https://doi.org/10.1016/j.carres.2003.10.024
  33. Segato RA, Pucinelli CM, Silva LA, et al. : Physicochemical Properties of Root Canal Filling Materials for Primary Teeth. Braz Dent J, 27:196-201, 2016. https://doi.org/10.1590/0103-6440201600206