DOI QR코드

DOI QR Code

Dietary Risk Assessment of Snf7 dsRNA for Coccinella septempunctata

  • Jung, Young Jun (Division of Ecological Safety, National Institute of Ecology) ;
  • Seol, Min-A (Division of Ecological Safety, National Institute of Ecology) ;
  • Choi, Wonkyun (Division of Ecological Safety, National Institute of Ecology) ;
  • Lee, Jung Ro (Division of Ecological Safety, National Institute of Ecology)
  • 투고 : 2021.06.04
  • 심사 : 2021.06.30
  • 발행 : 2021.08.01

초록

Recently, pest-resistant living modified (LM) crops developed using RNA interference (RNAi) technology have been imported into South Korea. However, the potential adverse effects of unintentionally released RNAi-based LM crops on non-target species have not yet been reported. Coccinella septempunctata, which feeds on aphids, is an important natural enemy insect which can be exposed to the double-stranded RNA (dsRNA) produced by RNAi-based LM plants. To assess the risk of ingestion of Snf7 dsRNA by C. septempunctata, we first identified the species through morphological analysis of collected insects. A method for species identification at the gene level was developed using a specific C. septempunctata 12S rRNA. Furthermore, an experimental model was devised to assess the risk of Snf7 dsRNA ingestion in C. septempunctata. Snf7 dsRNA was mass-purified using an effective dsRNA synthesis method and its presence in C. septempunctata was confirmed after treatment with purified Snf7 dsRNA. Finally, the survival rate, development time, and dry weight of Snf7 dsRNA-treated C. septempunctata were compared with those of GFP and vATPase A dsRNA control treatments, and no risk was found. This study illustrates an effective Snf7 dsRNA synthesis method, as well as a high-concentration domestic insect risk assessment method which uses dsRNA to assess the risk of unintentional released of LM organisms against non-target species.

키워드

과제정보

This work was supported by a grant from the National Institute of Ecology (NIE), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIE-A-2020-11).

참고문헌

  1. Alvarez-Alfageme, F., Palinkas, Z., Bigler, F., and Romeis, J. (2012). Development of an early-tier laboratory bioassay for assessing the impact of orally-active insecticidal compounds on larvae of Coccinella septempunctata (Coleoptera: Coccinellidae). Environmental Entomology, 41, 1687-1693. doi:10.1603/EN12032
  2. Bachman, P.M., Bolognesi, R., Moar, W.J., Mueller, G.M., Paradise, M.S., Ramaseshadri, P., et al. (2013). Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte). Transgenic Research, 22, 1207-1222. doi:10.1007/s11248-013-9716-5
  3. Bachman, P., Fridley, J., Mueller, G., Moar, W., and Levine, S.L. (2020). Sequence-activity relationships for the Snf7 insecticidal dsRNA in Chrysomelidae. Frontiers in Plant Science, 11, 1303. doi:10.3389/fpls.2020.01303
  4. Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilagan, O., et al. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 1322-1326. doi:10.1038/nbt1359
  5. Bolognesi, R., Ramaseshadri, P., Anderson, J., Bachman, P., Clinton, W., Flannagan, R., et al. (2012). Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS One, 7, e47534. doi:10.1371/journal.pone.0047534
  6. Burand, J.P., and Hunter, W.B. (2013). RNAi: future in insect management. Journal of Invertebrate Pathology, 112, S68-S74. doi:10.1016/j.jip.2012.07.012
  7. Dolling, W.R. (1991). The Hemiptera. London: Oxford University Press, p. 274.
  8. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806-811. doi:10.1038/35888
  9. Fischer, J.R., Zapata, F., Dubelman, S., Mueller, G.M., Jensen, P.D., and Levine, S.L. (2016). Characterizing a novel and sensitive method to measure dsRNA in soil. Chemosphere, 161, 319-324. doi:10.1016/j.chemosphere.2016.07.014
  10. Haller, S., Widmer, F., Siegfried, B.D., Zhuo, X., and Romeis, J. (2019). Responses of two ladybird beetle species (Coleoptera: Coccinellidae) to dietary RNAi. Pest Management Science, 75, 2652-2662. doi:10.1002/ps.5370
  11. Harwood, J.D., Samson, R.A., and Obrycki, J.J. (2007). Temporal detection of Cry1Ab-endotoxins in coccinellid predators from fields of Bacillusthuringiensis corn. Bulletin of Entomological Research, 97, 643-648. doi:10.1017/S000748530700524X
  12. Harwood, J.D., Wallin, W.G., and Obrycki, J.J. (2005). Uptake of Bt endotoxins by nontarget herbivores and higher order arthropod predators: molecular evidence from a transgenic corn agroecosystem. Molecular Ecology, 14, 2815-2823. doi:10.1111/j.1365-294X.2005.02611.x
  13. Hunter, W.B., Glick, E., Paldi, N., and Bextine, B.R. (2012). Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression. Southwestern Entomologist, 37, 85-87. doi:10.3958/059.037.0110
  14. Kalushkov, P., and Hodek, I. (2004). The effects of thirteen species of aphids on some life history parameters of the RNAi for insect control:current perspective and future ladybird Coccinella septempunctata. Biological Control, 49, 21-32. doi:10.1023/B:BICO.0000009385.90333.b4
  15. Katoch, R., Sethi, A., Thakur, N., and Murdock, L.L. (2013). challenges. Applied Biochemistry and Biotechnology, 171, 847-873. doi:10.1007/s12010-013-0399-4
  16. Kim, D.W., Sung, H., Shin, D., Shen, H., Ahnn, J., Lee, S.K., et al. (2011). Differential physiological roles of ESCRT complexes in Caenorhabditis elegans. Molecules and Cells, 31, 585-592. doi:10.1007/s10059-011-1045-z
  17. Kunte, N., McGraw, E., Bell, S., Held, D., and Avila, L-A. (2020). Prospects, challenges and current status of RNAi through insect feeding. Pest Management Science, 76, 26-41. doi:10.1002/ps.5588
  18. Le, Z. (2015). Population dynamic of Henosepilachna vigintioctopunctata in different host plants in Jianghan plain. Northern Horticulture, 11, 103-105.
  19. Lee, J-A., Beigneux, A., Ahmad, S.T., Young, S.G., and Gao, F-B. (2007). ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Current Biology, 17, 1561-1567. doi:10.1016/j.cub.2007.07.029
  20. Li, H., Guan, R., Guo, H., and Miao, X. (2015). New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests. Plant Cell & Environment, 38, 2277-2285. doi:10.1111/pce.12546
  21. Liang, C., Han, S., Han, H., Zhao, F., and He, Y. (2019). Selection of reference genes for Harmonia axyridis (Coleoptera:Coccinellidas) feeding on different diets. Journal of Asia-Pacific Entomology, 22, 1115-1122. doi:10.1016/j.aspen.2019.07.011
  22. Lim, H.S., Jung. Y.J., Kim, I.R., Kim, J., Ryu, S., Kim, B., et al. (2017). Acute oral toxicity of dsRNA to honey bee, Apis mellifera. Korean Journal of Environmental Agriculture, 36, 241-248. doi:10.5338/KJEA.2017.36.4.36
  23. Liu, F., Yang, B., Zhang, A., Ding, D., and Wang, G. (2019). Plant-mediated RNAi for controlling Apolygus lucorum. Frontiers in Plant Science, 10, 64. doi:10.3389/fpls.2019.00064
  24. Lu, J., Guo, W., Chen, S., Guo, M., Qiu, B., Yang, C., et al. (2020). Double-stranded RNAs targeting HvRPS18 and HvRPL13 reveal potential targets for pest management of the 28-spotted ladygbeetle, Henosepilachna vigintioctopunctata. Pest Management Science, 76, 2663-2673. doi:10.1002/ps.5809
  25. Niu, J., Shen, G., Christiaens, O., Smagghe, G., He, L., and Wang, J. (2018). Beyond insects: current status, achievements and future perspectives of RNAi in mite pests. Pest Management Science, 74, 2680-2687. doi:10.1002/ps.5071
  26. Pan, H., Yang, X., Romeis, J., Siegfried, B., and Zhou, X. (2020). Dietary RNAi toxicity assay exhibits differential responses to ingested dsRNAs among lady beetles. Pest Management Science, 76, 3606-3614. doi:10.1002/ps.5894
  27. Pang, X.F., and Mao, J.L. (1979). Economic Insects of China, 14, Coleoptera-Coccinellidae, II. Beijing: Science Press, pp. 108-112.
  28. Peck, J.W., Bowden, E.T., and Burbelo, P.D. (2004). Structure and function of human Vps20 and Snf7 proteins. Biochemical Journal, 377, 693-700. doi:10.1042/BJ20031347
  29. Ramaseshadri, P., Segers, G., Flannagan, R., Wiggins, E., Clinton, W., Llagan, O., et al. (2013). Physiologicaland cellular responses caused by RNAi-Mediated suppression of Snf7 Orthologue in Western Corn Rootworm (Diabrotica virgifera virgifera) Larvae. Plos One, 8, 54270. doi:10.1371/journal.pone.0054270
  30. Romeis, J., and Widmer, F. (2020). Assessing the risks of topically applied dsRNA-Based Products to non-target arthropods. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00679
  31. San Miguel, K., and Scott, J.G. (2016). The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Management Science, 72, 801-809. doi:10.1002/ps.4056
  32. Sweeney, N.T., Brenman, J.E., Jan, Y.N., and Gao, F.B. (2006). The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila. Current Biology, 16, 1006-1011. doi:10.1016/j.cub.2006.03.067
  33. Tu, J., Vallier, L.G., and Carlson, M. (1993). Molecular and genetic analysis of the SNF7 gene in Saccharomyces cerevisiae. Genetics, 135, 17-23.
  34. Vogel, E., Snatos, D., Mingels, L., Verdonckt, T.-W., and Broeck, J.V. (2019). RNA interference in insects: protecting beneficials and controlling pests. Frontiers in Physiology, 9, 1912. doi:10.3389/fphys.2018.01912
  35. Winter, V., and Hauser, M.T. (2006). Exploring the ESCRT-ing machinery in eukaryotes. Trends in Plant Science, 11, 115-123. doi:10.1016/j.tplants.2006.01.008
  36. Yao, D.B., Chi, D.F., Wu, Q.Y., Li, X.C., and Yu, J. (2011). Molecular phylogenetic relationships of differ forms within Harmonia axyridis Pallas (Coleoptera: Coccinellidae) based on sequences of 12S rRNA and 16S rRNA gene. Advanced Materials Research, 183-185, 757-767. doi:10.4028/www.scientific.net/AMR.183-185.757
  37. Yoon, J.S., Mogilicherla, K., Gurusamy, D., Chen, X., Chereddy, S.C.R.R., and Palli, S.R. (2018). Doublestranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proceedings of National Academy of Science of the United States of America, 115, 8334-8339. doi:10.1073/pnas.1809381115
  38. Yu, C., Fu, M., Lin, R., Zhang, Y., Yongguan, L., Jiang, H., et al. (2014). Toxic effects of hexaflumuron on the development of Coccinella septempunctata. Environmental Science and Pollution Research International, 21, 1418-1424. doi:10.1007/s11356-013-2036-8
  39. Zhang, J., Khan, S.A., Heckel, D.G., and Bock, R. (2017). Next-generation insect-resistant plants: RNAimediated crop protection. Trends in Biotechnology, 35, 871-882. doi:10.1016/j.tibtech.2017.04.009
  40. Zhang, X., Zhang, J., and Zhu, K.Y. (2010). Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Molecular Biology, 19, 683-693. doi:10.1111/j.1365-2583.2010.01029.x
  41. Zhang, Y-y., Li, H-X., Shu, W-B., Zhang, C-J., and Ye, Z-B. (2011). RNA interference of a mitochondrial APX gene improves vitamin C accumulation in tomato fruit. Scientia Horticulturae, 129, 220-226. doi:10.1016/j.scienta.2011.03.025
  42. Zhou, X., Wheeler, M.M., Oi, F.M., and Scharf, M.E. (2008). RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochemistry and Molecular Biology, 38, 805-815. doi:10.1016/j.ibmb.2008.05.005
  43. Zhu, F., Xu, J., Palli, R., Ferguson, J., and Palli, S.R. (2011). Ingested RNA interference for managing the populations of the Colorado potato beetle. Leptinotarsa decemlineata. Pest Management Science, 67, 175-182. doi:10.1002/ps.2048
  44. Zhu, K.Y., and Palli, S.R. (2019). Mechanisms, applications, and challenges of insect RNA interference. Annual Review of Entomology, 65, 293-311. doi:10.1146/annurev-ento-011019-025224
  45. Zotti, M., Dos Santos, E.A., Cagliari, D., Christiaens, O., Taning, C.N.T., and Smagghe, G. (2018). RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Management Science, 74, 1239-1250. doi:10.1002/ps.4813