DOI QR코드

DOI QR Code

Screening of novel alkaloid inhibitors for vascular endothelial growth factor in cancer cells: an integrated computational approach

  • Shahik, Shah Md. (Molecular Biology Department, AFC Agro Biotech Ltd.) ;
  • Salauddin, Asma (Bioinformatics Division, Disease Biology and Molecular Epidemiology Research Group(dBme)) ;
  • Hossain, Md. Shakhawat (Bioinformatics Division, Disease Biology and Molecular Epidemiology Research Group(dBme)) ;
  • Noyon, Sajjad Hossain (Bioinformatics Division, Disease Biology and Molecular Epidemiology Research Group(dBme)) ;
  • Moin, Abu Tayab (Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong) ;
  • Mizan, Shagufta (Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong) ;
  • Raza, Md. Thosif (Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong)
  • Received : 2020.11.24
  • Accepted : 2021.02.11
  • Published : 2021.03.31

Abstract

Vascular endothelial growth factor (VEGF) is expressed at elevated levels by most cancer cells, which can stimulate vascular endothelial cell growth, survival, proliferation as well as trigger angiogenesis modulated by VEGF and VEGFR (a tyrosine kinase receptor) signaling. The angiogenic effects of the VEGF family are thought to be primarily mediated through the interaction of VEGF with VEGFR-2. Targeting this signaling molecule and its receptor is a novel approach for blocking angiogenesis. In recent years virtual high throughput screening has emerged as a widely accepted powerful technique in the identification of novel and diverse leads. The high resolution X-ray structure of VEGF has paved the way to introduce new small molecular inhibitors by structure-based virtual screening. In this study using different alkaloid molecules as potential novel inhibitors of VEGF, we proposed three alkaloid candidates for inhibiting VEGF and VEGFR mediated angiogenesis. As these three alkaloid compounds exhibited high scoring functions, which also highlights their high binding ability, it is evident that these alkaloids can be taken to further drug development pipelines for use as novel lead compounds to design new and effective drugs against cancer.

Keywords

Acknowledgement

We cordially thank Md. Saiful Islam, PhD Candidate/Researcher at Albert-Ludwigs-Universitat Freiburg and Graduate Research Assistant at Universitatsklinikum Freiburg, for his critical and valuable suggestions on the analysis and the manuscript preparation.

References

  1. Surman M, Janik ME. Stress and its molecular consequences in cancer progression. Postepy Hig Med Dosw (Online) 2017;71: 485-499.
  2. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 2019;92:121-135. https://doi.org/10.1016/j.metabol.2018.11.001
  3. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-E386. https://doi.org/10.1002/ijc.29210
  4. DeSantis CE, Miller KD, Dale W, Mohile SG, Cohen HJ, Leach CR, et al. Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J Clin 2019;69:452-467. https://doi.org/10.3322/caac.21577
  5. Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res 2017;7:1016-1036.
  6. Yehya AH, Asif M, Petersen SH, Subramaniam AV, Kono K, Majid A, et al. Angiogenesis: managing the culprits behind tumorigenesis and metastasis. Medicina (Kaunas) 2018;54:8. https://doi.org/10.3390/medicina54010008
  7. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag 2006;2:213-219. https://doi.org/10.2147/vhrm.2006.2.3.213
  8. Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: is there a role for combinations with immunotherapy? Angiogenesis 2017;20:185-204. https://doi.org/10.1007/s10456-017-9552-y
  9. Risau W. Mechanisms of angiogenesis. Nature 1997;386:671-674. https://doi.org/10.1038/386671a0
  10. Holmgren L, O'Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995;1:149-153. https://doi.org/10.1038/nm0295-149
  11. Parangi S, O'Reilly M, Christofori G, Holmgren L, Grosfeld J, Folkman J, et al. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci U S A 1996;93: 2002-2007. https://doi.org/10.1073/pnas.93.5.2002
  12. Hisano Y, Hla T. Bioactive lysolipids in cancer and angiogenesis. Pharmacol Ther 2019;193:91-98. https://doi.org/10.1016/j.pharmthera.2018.07.006
  13. Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994;265:1582-1584. https://doi.org/10.1126/science.7521539
  14. Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 2001;22:201-207. https://doi.org/10.1016/S0165-6147(00)01676-X
  15. Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 2007;62:179-213. https://doi.org/10.1016/j.critrevonc.2007.01.006
  16. Matsumoto T, Claesson-Welsh L. VEGF receptor signal transduction. Sci STKE 2001;2001:re21.
  17. Holmes DI, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol 2005;6:209. https://doi.org/10.1186/gb-2005-6-2-209
  18. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13:9-22. https://doi.org/10.1096/fasebj.13.1.9
  19. Melincovici CS, Bosca AB, Susman S, Marginean M, Mihu C, Istrate M, et al. Vascular endothelial growth factor (VEGF): key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 2018;59:455-467.
  20. Wise LM, Stuart GS, Jones NC, Fleming SB, Mercer AA. Orf virus IL-10 and VEGF-E act synergistically to enhance healing of cutaneous wounds in mice. J Clin Med 2020;9:1085. https://doi.org/10.3390/jcm9041085
  21. Claesson-Welsh L. VEGF receptor signal transduction: a brief update. Vascul Pharmacol 2016;86:14-17. https://doi.org/10.1016/j.vph.2016.05.011
  22. Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, et al. Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci 2018;19:1264. https://doi.org/10.3390/ijms19041264
  23. Alvarez-Aznar A, Muhl L, Gaengel K. VEGF receptor tyrosine kinases: key regulators of vascular function. Curr Top Dev Biol 2017;123:433-482. https://doi.org/10.1016/bs.ctdb.2016.10.001
  24. Kilickap S, Abali H, Celik I. Bevacizumab, bleeding, thrombosis, and warfarin. J Clin Oncol 2003;21:3542. https://doi.org/10.1200/JCO.2003.99.046
  25. Wu JB, Tang YL, Liang XH. Targeting VEGF pathway to normalize the vasculature: an emerging insight in cancer therapy. Onco Targets Ther 2018;11:6901-6909. https://doi.org/10.2147/OTT.S172042
  26. Elice F, Rodeghiero F. Side effects of anti-angiogenic drugs. Thromb Res 2012;129 Suppl 1:S50-53. https://doi.org/10.1016/S0049-3848(12)70016-6
  27. Carden CP, Larkin JM, Rosenthal MA. What is the risk of intracranial bleeding during anti-VEGF therapy? Neuro Oncol 2008; 10:624-630. https://doi.org/10.1215/15228517-2008-010
  28. Elice F, Rodeghiero F. Bleeding complications of antiangiogenic therapy: pathogenetic mechanisms and clinical impact. Thromb Res 2010;125 Suppl 2:S55-57. https://doi.org/10.1016/S0049-3848(10)70014-1
  29. Zachary I. Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor. Am J Physiol Cell Physiol 2001;280:C1375-1386. https://doi.org/10.1152/ajpcell.2001.280.6.C1375
  30. Niu G, Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets 2010;11: 1000-1017. https://doi.org/10.2174/138945010791591395
  31. Hirai M, Nakagawara A, Oosaki T, Hayashi Y, Hirono M, Yoshihara T. Expression of vascular endothelial growth factors (VEGF-A/VEGF-1 and VEGF-C/VEGF-2) in postmenopausal uterine endometrial carcinoma. Gynecol Oncol 2001;80:181-188. https://doi.org/10.1006/gyno.2000.6056
  32. Priya R, Sumitha R, Doss CG, Rajasekaran C, Babu S, Seenivasan R, et al. Molecular docking and molecular dynamics to identify a novel human immunodeficiency virus inhibitor from alkaloids of Toddalia asiatica. Pharmacogn Mag 2015;11(Suppl 3):S414-S422.
  33. Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 2018; 46:W363-W367. https://doi.org/10.1093/nar/gky473
  34. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 2006;34:W116-W118. https://doi.org/10.1093/nar/gkl282
  35. Furnham N, Holliday GL, de Beer TA, Jacobsen JO, Pearson WR, Thornton JM. The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res 2014;42:D485-D489. https://doi.org/10.1093/nar/gkt1243
  36. Chakraborty C, Mallick B, Sharma AR, Sharma G, Jagga S, Doss CG, et al. Micro-environmental signature of the interactions between druggable target protein, dipeptidyl peptidase-IV, and anti-diabetic drugs. Cell J 2017;19:65-83.
  37. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 2019;47:D1102-D1109. https://doi.org/10.1093/nar/gky1033
  38. Sterling T, Irwin JJ. ZINC 15: ligand discovery for everyone. J Chem Inf Model 2015;55:2324-2337. https://doi.org/10.1021/acs.jcim.5b00559
  39. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminform 2011;3:33. https://doi.org/10.1186/1758-2946-3-33
  40. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010;31:455-461. https://doi.org/10.1002/jcc.21334
  41. Gao YD, Huang JF. An extension strategy of Discovery Studio 2.0 for non-bonded interaction energy automatic calculation at the residue level. Dongwuxue Yanjiu 2011;32:262-266.
  42. Alqahtani S. In silico ADME-Tox modeling: progress and prospects. Expert Opin Drug Metab Toxicol 2017;13:1147-1158. https://doi.org/10.1080/17425255.2017.1389897
  43. Sander T, Freyss J, Korff M, Reich JR, Rufener C. OSIRIS, an entirely in-house developed drug discovery informatics system. J Chem Inf Model 2009;49:232-246. https://doi.org/10.1021/ci800305f
  44. Lagorce D, Maupetit J, Baell J, Sperandio O, Tuffery P, Miteva MA, et al. The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics 2011; 27:2018-2020. https://doi.org/10.1093/bioinformatics/btr333
  45. Stirland DL, Nichols JW, Miura S, Bae YH. Mind the gap: a survey of how cancer drug carriers are susceptible to the gap between research and practice. J Control Release 2013;172:1045-1064. https://doi.org/10.1016/j.jconrel.2013.09.026
  46. Miguel JS, Weisel K, Moreau P, Lacy M, Song K, Delforge M, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol 2013;14:1055-1066. https://doi.org/10.1016/S1470-2045(13)70380-2
  47. Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer Lett 2012;320:130-137. https://doi.org/10.1016/j.canlet.2012.03.008
  48. Sitohy B, Nagy JA, Dvorak HF. Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res 2012;72:1909-1914. https://doi.org/10.1158/0008-5472.CAN-11-3406
  49. Ruvinsky I, Silver LM, Gibson-Brown JJ. Phylogenetic analysis of T-Box genes demonstrates the importance of amphioxus for understanding evolution of the vertebrate genome. Genetics 2000; 156:1249-1257. https://doi.org/10.1093/genetics/156.3.1249
  50. Liu K, Kokubo H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: a cross-docking study. J Chem Inf Model 2017;57:2514-2522. https://doi.org/10.1021/acs.jcim.7b00412