DOI QR코드

DOI QR Code

A network-biology approach for identification of key genes and pathways involved in malignant peritoneal mesothelioma

  • Mahfuz, A.M.U.B. (Department of Biotechnology & Genetic Engineering, Faculty of Life Science, University of Development Alternative) ;
  • Zubair-Bin-Mahfuj, A.M. (Department of Oral and Maxillofacial Surgery, Dhaka Dental College) ;
  • Podder, Dibya Joti (Department of General Surgery, Sher-E-Bangla Medical College)
  • Received : 2021.04.07
  • Accepted : 2021.05.15
  • Published : 2021.06.30

Abstract

Even in the current age of advanced medicine, the prognosis of malignant peritoneal mesothelioma (MPM) remains abysmal. Molecular mechanisms responsible for the initiation and progression of MPM are still largely not understood. Adopting an integrated bioinformatics approach, this study aims to identify the key genes and pathways responsible for MPM. Genes that are differentially expressed in MPM in comparison with the peritoneum of healthy controls have been identified by analyzing a microarray gene expression dataset. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of these differentially expressed genes (DEG) were conducted to gain a better insight. A protein-protein interaction (PPI) network of the proteins encoded by the DEGs was constructed using STRING and hub genes were detected analyzing this network. Next, the transcription factors and miRNAs that have possible regulatory roles on the hub genes were detected. Finally, survival analyses based on the hub genes were conducted using the GEPIA2 web server. Six hundred six genes were found to be differentially expressed in MPM; 133 are upregulated and 473 are downregulated. Analyzing the STRING generated PPI network, six dense modules and 12 hub genes were identified. Fifteen transcription factors and 10 miRNAs were identified to have the most extensive regulatory functions on the DEGs. Through bioinformatics analyses, this work provides an insight into the potential genes and pathways involved in MPM.

Keywords

References

  1. Eroschenko VP. DiFiore's Atlas of Histology with Functional Correlations. Philadelphia: Lippincott Williams & Wilkins, 2008. p. 31.
  2. Bridda A, Padoan I, Mencarelli R, Frego M. Peritoneal mesothelioma: a review. MedGenMed 2007;9:32.
  3. Survival rates for mesothelioma [Internet]. Georgia: American Cancer Society, 2020. Accessed 2020 Oct 25. Available from: https://www.cancer.org/cancer/malignant-mesothelioma/detection-diagnosis-staging/survival-statistics.html.
  4. Kim J, Bhagwandin S, Labow DM. Malignant peritoneal mesothelioma: a review. Ann Transl Med 2017;5:236. https://doi.org/10.21037/atm.2017.03.96
  5. Wang Y, Zheng T. Screening of hub genes and pathways in colorectal cancer with microarray technology. Pathol Oncol Res 2014;20:611-618. https://doi.org/10.1007/s12253-013-9739-5
  6. Cai Y, Mei J, Xiao Z, Xu B, Jiang X, Zhang Y, et al. Identification of five hub genes as monitoring biomarkers for breast cancer metastasis in silico. Hereditas 2019;156:20. https://doi.org/10.1186/s41065-019-0096-6
  7. Li R, Wang L, Wang X, Geng RX, Li N, Liu XH. Identification of hub genes associated with outcome of clear cell renal cell carcinoma. Oncol Lett 2020;19:2846-2860.
  8. Xiu MX, Zeng B, Kuang BH. Identification of hub genes, miRNAs and regulatory factors relevant for Duchenne muscular dystrophy by bioinformatics analysis. Int J Neurosci 2020 Aug 26 [Epub]. https://doi.org/10.1080/00207454.2020.1810030.
  9. Khan A, Rehman Z, Hashmi HF, Khan AA, Junaid M, Sayaf AM, et al. An integrated systems biology and network-based approaches to identify novel biomarkers in breast cancer cell lines using gene expression data. Interdiscip Sci 2020;12:155-168. https://doi.org/10.1007/s12539-020-00360-0
  10. Yang W, Zhao X, Han Y, Duan L, Lu X, Wang X, et al. Identification of hub genes and therapeutic drugs in esophageal squamous cell carcinoma based on integrated bioinformatics strategy. Cancer Cell Int 2019;19:142. https://doi.org/10.1186/s12935-019-0854-6
  11. Yang G, Jian L, Lin X, Zhu A, Wen G. Bioinformatics analysis of potential key genes in trastuzumab-resistant gastric cancer. Dis Markers 2019;2019:1372571.
  12. Zhang X, Yang L, Chen W, Kong M. Identification of potential hub genes and therapeutic drugs in malignant pleural mesothelioma by integrated bioinformatics analysis. Oncol Res Treat 2020;43:656-671. https://doi.org/10.1159/000510534
  13. Liu X, Qian K, Lu G, Chen P, Zhang Y. Identification of genes and pathways involved in malignant pleural mesothelioma using bioinformatics methods. BMC Med Genomics 2021;14:104. https://doi.org/10.1186/s12920-021-00954-7
  14. Zhang C, Liu S, Wang X, Liu H, Zhou X, Liu H. COL1A1 is a potential prognostic biomarker and correlated with immune infiltration in mesothelioma. Biomed Res Int 2021;2021:5320941.
  15. Sciarrillo R, Wojtuszkiewicz A, El Hassouni B, Funel N, Gandellini P, Lagerweij T, et al. Splicing modulation as novel therapeutic strategy against diffuse malignant peritoneal mesothelioma. EBioMedicine 2019;39:215-225. https://doi.org/10.1016/j.ebiom.2018.12.025
  16. Shrestha R, Nabavi N, Lin YY, Mo F, Anderson S, Volik S, et al. BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma. Genome Med 2019;11:8. https://doi.org/10.1186/s13073-019-0620-3
  17. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets: update. Nucleic Acids Res 2013;41:D991-D995. https://doi.org/10.1093/nar/gks1193
  18. Zhou G, Soufan O, Ewald J, Hancock RE, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 2019;47:W234-W241. https://doi.org/10.1093/nar/gkz240
  19. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015;43:e47. https://doi.org/10.1093/nar/gkv007
  20. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016;44: W90-W97. https://doi.org/10.1093/nar/gkw377
  21. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000;25:25-29. https://doi.org/10.1038/75556
  22. The Gene Ontology C. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 2019;47:D330- D338. https://doi.org/10.1093/nar/gky1055
  23. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res 2019;47:D590-D595. https://doi.org/10.1093/nar/gky962
  24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545-15550. https://doi.org/10.1073/pnas.0506580102
  25. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet 2006;38:500-501. https://doi.org/10.1038/ng0506-500
  26. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 2015;1:417-425. https://doi.org/10.1016/j.cels.2015.12.004
  27. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47:D607-D613. https://doi.org/10.1093/nar/gky1131
  28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-2504. https://doi.org/10.1101/gr.1239303
  29. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003;4:2. https://doi.org/10.1186/1471-2105-4-2
  30. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014;8 Suppl 4:S11. https://doi.org/10.1186/1752-0509-8-S4-S11
  31. Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 2016;17:719-732. https://doi.org/10.1038/nrg.2016.134
  32. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018;9:402. https://doi.org/10.3389/fendo.2018.00402
  33. Chang L, Zhou G, Soufan O, Xia J. miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res 2020;48:W244-W251. https://doi.org/10.1093/nar/gkaa467
  34. Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma'ayan A. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 2010;26: 2438-2444. https://doi.org/10.1093/bioinformatics/btq466
  35. Bhullar KS, Lagaron NO, McGowan EM, Parmar I, Jha A, Hubbard BP, et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer 2018;17:48. https://doi.org/10.1186/s12943-018-0804-2
  36. Lachmann A, Ma'ayan A. KEA: kinase enrichment analysis. Bioinformatics 2009;25:684-686. https://doi.org/10.1093/bioinformatics/btp026
  37. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 2019;47:W556-W560. https://doi.org/10.1093/nar/gkz430
  38. Hmeljak J, Sanchez-Vega F, Hoadley KA, Shih J, Stewart C, Heiman D, et al. Integrative molecular characterization of malignant pleural mesothelioma. Cancer Discov 2018;8:1548-1565. https://doi.org/10.1158/2159-8290.CD-18-0804
  39. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018;46:D1074-D1082. https://doi.org/10.1093/nar/gkx1037
  40. Goedhart J, Luijsterburg MS. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci Rep 2020;10:20560. https://doi.org/10.1038/s41598-020-76603-3
  41. Wong AS, Gumbiner BM. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J Cell Biol 2003;161:1191-1203. https://doi.org/10.1083/jcb.200212033
  42. Ali G, Borrelli N, Riccardo G, Proietti A, Pelliccioni S, Niccoli C, et al. Differential expression of extracellular matrix constituents and cell adhesion molecules between malignant pleural mesothelioma and mesothelial hyperplasia. J Thorac Oncol 2013;8:1389-1395. https://doi.org/10.1097/JTO.0b013e3182a59f45
  43. Guo C, Liu S, Sun MZ. Novel insight into the role of GAPDH playing in tumor. Clin Transl Oncol 2013;15:167-172. https://doi.org/10.1007/s12094-012-0924-x
  44. Barone E, Gemignani F, Landi S. Overexpressed genes in malignant pleural mesothelioma: implications in clinical management. J Thorac Dis 2018;10(Suppl 2):S369-S382. https://doi.org/10.21037/jtd.2017.10.158
  45. Lau MT, So WK, Leung PC. Fibroblast growth factor 2 induces E-cadherin down-regulation via PI3K/Akt/mTOR and MAPK/ ERK signaling in ovarian cancer cells. PLoS One 2013;8:e59083. https://doi.org/10.1371/journal.pone.0059083
  46. Delrieu I, Arnaud E, Ferjoux G, Bayard F, Faye JC. Overexpression of the FGF-2 24-kDa isoform up-regulates IL-6 transcription in NIH-3T3 cells. FEBS Lett 1998;436:17-22. https://doi.org/10.1016/S0014-5793(98)01086-2
  47. Larsson LG, Henriksson MA. The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res 2010;316:1429-1437. https://doi.org/10.1016/j.yexcr.2010.03.025
  48. Okuyama H, Endo H, Akashika T, Kato K, Inoue M. Downregulation of c-MYC protein levels contributes to cancer cell survival under dual deficiency of oxygen and glucose. Cancer Res 2010; 70:10213-10223. https://doi.org/10.1158/0008-5472.CAN-10-2720
  49. Szabo PM, Racz K, Igaz P. Underexpression of C-myc in adrenocortical cancer: a major pathogenic event? Horm Metab Res 2011;43:297-299. https://doi.org/10.1055/s-0031-1273762
  50. Sun H, Zhang X, Sun D, Jia X, Xu L, Qiao Y, et al. COX-2 expression in ovarian cancer: an updated meta-analysis. Oncotarget 2017;8:88152-88162. https://doi.org/10.18632/oncotarget.21538
  51. Ha M, Son YR, Kim J, Park SM, Hong CM, Choi D, et al. TEK is a novel prognostic marker for clear cell renal cell carcinoma. Eur Rev Med Pharmacol Sci 2019;23:1451-1458.
  52. Cui S, Huang F, Yu F, Jian S, Zhang L, Liu X, et al. Identification of important genes and pathways leading to poor prognosis of nonsmall cell lung cancer using Integrated Bioinformatics. Preprint at: https://doi.org/10.21203/rs.3.rs-34440/v1 (2020).
  53. Wang W, He J, Lu H, Kong Q, Lin S. KRT8 and KRT19, associated with EMT, are hypomethylated and overexpressed in lung adenocarcinoma and link to unfavorable prognosis. Biosci Rep 2020;40:BSR20193468. https://doi.org/10.1042/BSR20193468
  54. Nader JS, Abadie J, Deshayes S, Boissard A, Blandin S, Blanquart C, et al. Characterization of increasing stages of invasiveness identifies stromal/cancer cell crosstalk in rat models of mesothelioma. Oncotarget 2018;9:16311-16329. https://doi.org/10.18632/oncotarget.24632
  55. Ma B, Wang J, Song Y, Gao P, Sun J, Chen X, et al. Upregulated long intergenic noncoding RNA KRT18P55 acts as a novel biomarker for the progression of intestinal-type gastric cancer. Onco Targets Ther 2016;9:445-453.
  56. Hassan R, Ho M. Mesothelin targeted cancer immunotherapy. Eur J Cancer 2008;44:46-53. https://doi.org/10.1016/j.ejca.2007.08.028
  57. Yu L, Feng M, Kim H, Phung Y, Kleiner DE, Gores GJ, et al. Mesothelin as a potential therapeutic target in human cholangiocarcinoma. J Cancer 2010;1:141-149.
  58. Munn LL, Garkavtsev I. SLPI: a new target for stopping metastasis. Aging (Albany NY) 2018;10:13-14. https://doi.org/10.18632/aging.101372
  59. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275:1320-1323. https://doi.org/10.1126/science.275.5304.1320
  60. Saito K, Sakaguchi M, Iioka H, Matsui M, Nakanishi H, Huh NH, et al. Coxsackie and adenovirus receptor is a critical regulator for the survival and growth of oral squamous carcinoma cells. Oncogene 2014;33:1274-1286. https://doi.org/10.1038/onc.2013.66
  61. El Bezawy R, De Cesare M, Pennati M, Deraco M, Gandellini P, Zuco V, et al. Antitumor activity of miR-34a in peritoneal mesothelioma relies on c-MET and AXL inhibition: persistent activation of ERK and AKT signaling as a possible cytoprotective mechanism. J Hematol Oncol 2017;10:19. https://doi.org/10.1186/s13045-016-0387-6