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A RELATIONSHIP BETWEEN CAYLEY-DICKSON PROCESS

AND THE GENERALIZED STUDY DETERMINANT

Pritta Etriana Putri and Laurence Petrus Wijaya

Abstract. The Study determinant is known as one of replacements for

the determinant of matrices with entries in a noncommutative ring. In
this paper, we give a generalization of the Study determinant and show

its relationship with the Cayley-Dickson process. We also give some prop-
erties of a non-associative ring obtained by the Cayley-Dickson process

with a not necessarily commutative, but associative ring as the initial

ring.

1. Introduction

The Cayley-Dickson process is known as an important tool to construct
a sequence of rings with involution. The well-known example is to produce
complex numbers, quaternions, and octonions from real numbers. Yamaguchi
[7] investigated the ring obtained by applying the Cayley-Dickson process from
a commutative ring, and Flaut [3] used the process from an algebra over field,
but not from any arbitrary ring. The Cayley-Dickson process has provided
fundamental role for the study of some topics in mathematics, especially the
functional analysis, composition algebras, and also in the algebraic geometry.
Actually, some algebras which constructed by using the Cayley-Dickson process
give contributions in physics, especially on particle physics [5]. For example,
the class of supersymmetric oscillators with dimension N ≤ 7 associated with
the algebras obtained by the Cayley-Dickson process was introduced in [2].

The Study determinant was first introduced by Study [6]. His idea was as
follow. Let A be a square matrix with size n and entries in H. Define a map
Ψ to obtain a square matrix B with entries in C and size 2n. Study defined
the Study determinant by taking a determinant of matrix B. The properties
of the Study determinant have been further studied in [1] and [7].
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In this paper we will first construct a non-associative ring by applying the
Cayley-Dickson process to any arbitrary (not necessarily commutative, but as-
sociative) ring inductively, and give its matrix representation. At the next step,
we will give a generalization of the Study determinant. Lastly, the connection
between the Cayley-Dickson process and the generalized Study determinant
will be presented in the last section.

2. Cayley-Dickson process

In this section, we will apply the Cayley-Dickson process to an arbitrary
associative ring R to obtain a ring R1. Further, by similar process, we will
construct a ring R2 from R1. We will define the norms in R1 and R2, which
play important roles to our result. We will also give the properties of the rings
obtained by the Cayley-Dickson process.

Let R be a (not necessarily commutative but associative) ring, and we write
· : R→ R to mean an involutive anti-automorphism of R. Assume

(2.1) ab− ba+ ab− ba = 0 (a, b ∈ R),

(2.2) āa = aā (a ∈ R),

(2.3) āab = bāa (a, b ∈ R).

Example 2.1. Let

H = {x+ yi + zj + wk : x, y, z, w ∈ R}
be a quaternion ring over real numbers, where

ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j,

i2 = j2 = k2 = −1.

Define x+ yi + zj + wk = x − yi − zj − wk for every x + yi + zj + wk ∈ H.
Then ·̄ : H → H is an involutive anti-automorphism of H. It can be checked
that the conditions of (2.1), (2.2), and (2.3) are also satisfied.

Now, by using the Cayley-Dickson process, we will produce a non-associative
ring from R. Define

R1 = R⊕R
with the following multiplication:

(2.4) (a, b)(c, d) = (ac− d̄b, da+ bc̄).

Define τ : R1 → R1 by

(2.5) (a, b)τ = (ā,−b).
Since ((a, b)τ )τ = (ā,−b)τ = (a, b), τ is involutive. We state properties of τ in
several lemmas.

Lemma 2.2. τ is a ring anti-automorphism.
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Proof. Let (a, b), (c, d) ∈ R1. Then

((a, b) + (c, d))τ = (a+ c, b+ d)τ = (a+ c,−b− d) = (ā,−b) + (c̄,−d)

= (a, b)τ + (c, d)τ .

Also,

((a, b)(c, d))τ = (ac− d̄b, da+ bc̄)τ = (ac− d̄b,−da− bc̄),
(c, d)τ (a, b)τ = (c̄,−d)(ā,−b) = (c̄ā− b̄d, (−b)c̄+ (−d)a),

and hence ((a, b)(c, d))τ = (c, d)τ (a, b)τ . Thus, the result follows. �

We define the norm in R1 by

(2.6) n((a, b)) = āa+ b̄b (a, b ∈ R).

Then

(2.7) (a, b)τ (a, b) = (n(a, b), 0) (a, b ∈ R).

We have the following property.

Lemma 2.3. Let α, β, γ ∈ R1. Then

(i) αβ − βα+ (αβ − βα)τ = 0,
(ii) ατα = αατ ,
(iii) αατβ = βαατ ,
(iv) (αβ)γ = α(βγ) if R is commutative.

Proof. Let α = (a, b), β = (c, d), γ = (e, f) (a, b, c, d, e, f ∈ R).
(i) Since

αβ − βα = (a, b)(c, d)− (c, d)(a, b)

= (ac− d̄b, da+ bc̄)− (ca− b̄d, bc+ dā)

= (ac− ca+ b̄d− d̄b, da− dā+ bc̄− bc),

and

(αβ − βα)τ = (ac− ca+ b̄d− d̄b,−(da− dā+ bc̄− bc)),
we have

αβ − βα+ (αβ − βα)τ = (ac− ca+ b̄d− d̄b+ ac− ca+ b̄d− d̄b, 0)

= 0 (by (2.1)).

(ii)

αατ = (n(α), 0) (by (2.7))

= (āa+ b̄b, 0) (by (2.6))

= (āa+ b̄b, bā+ (−b)ā)

= (ā,−b)(a, b)
= ατα.
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(iii)

αατβ = (āa+ b̄b, 0)(c, d) (by (2.7))

= ((āa+ b̄b)c, d(āa+ b̄b))

= (c(āa+ b̄b), d(āa+ b̄b)) (by (2.3))

= (c, d)(āa+ b̄b, 0)

= βαατ .

(iv) Since R is commutative and

(αβ)γ = ((a, b)(c, d))(e, f)

= (ac− d̄b, da+ bc̄)(e, f)

= (ace− d̄be− f̄da− f̄ bc̄, fac− fd̄b+ daē− bc̄ē),

α(βγ) = (a, b)((c, d)(e, f))

= (a, b)(ce− ff̄d, fc− dē)
= (ace− af̄d− f̄ c̄b− d̄eb, fca+ dēa+ bc̄ē− bfd̄),

the result follows. �

Clearly, if R is commutative, then R1 is associative.

Lemma 2.4. The norm in R1 has the multiplicative property.

Proof. Let α = (a, b), β = (c, d), where a, b, c, d ∈ R. By (2.1), we have

(2.8) c(b̄da)− (b̄da)c+ c(b̄da)− (b̄da)c = 0.

Thus the result follows from (2.1) and (2.3). �

Next, we extend R1 to a non-associative ring R2 by using the Cayley-Dickson
process. Similar with the previous procedure, we define R2 = R1 ⊕ R1 with
the following multiplication

(α, β)(γ, δ) = (αγ − δτβ, δα+ βγτ ) (α, β, γ, δ ∈ R1).(2.9)

Hence, if

α = (a, b), β = (c, d), γ = (e, f), δ = (g, h), (a, b, c, d, e, f, g, h ∈ R),

then (2.9) becomes

(α, β)(γ, δ) = ((ae− f̄ b− ḡc− d̄h, fa+ bē− dḡ + hc̄),

(ga− b̄h+ cē+ f̄d, bg + hā− fc+ de)).(2.10)

We remark here that the equation below has a relation with the special case
of Lagrange’s identity (see [8] for more information related to the particular
case of Lagrange’s identity). That is, let

q = ae− f̄ b− ḡc− d̄h, r = fa+ bē− dḡ + hc̄,

s = ga− b̄h+ cē+ f̄d, t = bg + hā− fc+ de.
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Then qq̄+ rr̄+ ss̄+ tt̄ = (aā+ bb̄+ cc̄+ dd̄)(eē+ ff̄ + gḡ+ hh̄). Furthermore,
Flaut and Shpakivskyi [4] discovered some identities that can be also obtained
from the Cayley-Dickson process.

Now, define ∗ : R2 → R2 by (α, β) 7→ (ατ ,−β) for every α, β ∈ R1. It is
easy to see that ∗ is an involutive anti-automorphism of R2 by Lemma 2.2. We
note here that similar property of Lemma 2.3(i)–(iv) also holds in R2. Finally,
define N : R2 → R, the norm in R2, by N((a, b), (c, d)) = aā + bb̄ + cc̄ + dd̄.
This will help us to see the connection between the Cayley-Dickson process and
the generalized Study determinant in the next section.

3. A generalization of the Study determinant

In this section, we will give a matrix representation of the Cayley-Dickson
process of previous section and a generalization of the Study determinant.

Firstly, define

R̃ =

{[
α β
−βτ ατ

]
| α, β ∈ R1

}
.

The addition in R̃ is the standard matrix addition and the multiplication in R̃
is defined by[

α β
−βτ ατ

]
?

[
γ δ
−δτ γτ

]
=

[
αγ − δτβ δα+ βγτ

−γβτ − ατδτ −βτδ + γτατ

]
(3.1)

=

[
αγ − δτβ δα+ βγτ

−(δα+ βγτ )τ (αγ − δτβ)τ

]
for α, β, γ, δ ∈ R1. The operation ? gives the multiplication operation from the
Cayley-Dickson process in the first row of R1 and the form of the conjugate

product in the second row. Define σ : R̃→ R̃ by([
α β
−βτ ατ

])σ
=

[
ατ −β
βτ α

]
for every α, β ∈ R1. It is easy to see that σ is an involutive anti-automorphism

of R̃. Indeed, let α, β, γ, δ ∈ R1. Then([
α β
−βτ ατ

]
?

[
γ δ
−δτ γτ

])σ
=

([
αγ − δτβ δα+ βγτ

−(δα+ βγτ )τ (αγ − δτβ)τ

])σ
.

On the other hand,([
γ δ
−δτ γτ

])σ
?

([
α β
−βτ ατ

])σ
=

[
γτ −δ
δτ γ

]
?

[
ατ −β
βτ α

]
=

[
γτατ − βτδ −βγτ − δα
ατδτ + γβτ −δτβ + αγ

]
=

[
(−δτβ + αγ)τ −(βγτ + δα)
(βγτ + δα)τ −δτβ + αγ

]
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=

([
−δτβ + αγ βγτ + δα
−(βγτ + δα)τ (−δτβ + αγ)τ

])σ
.

So, σ is an anti-automorphism of R̃. Also,([
ατ −β
βτ α

])σ
=

[
α β
−βτ ατ

]
.

Hence, σ is involutive.
Note that if we denote 1 = (1, 0) and j = (0, 1) in R1, then we use the

identification R = R⊕ 0 ⊂ R1. Also, for every a, b ∈ R, we have a = (a, 0), b =
(b, 0) ∈ R1 and

a+ b = (a, 0) + (b, 0) = (a+ b, 0) ∈ R⊕ 0 = R,

ab = (a, 0)(b, 0) = (ab, 0) ∈ R⊕ 0 = R.

Therefore, the fact that R is a subring of R1 implies that Mn(R) is a subring
of Mn(R1), where Mn(A) denotes as usual the ring of matrices of size n × n
over a ring A.

Lemma 3.1. For every z ∈ R,

(3.2) zj = jz̄.

Proof. Since z, z̄ ∈ R and R is a subring of R1, z (z̄ resp.) can be written as
(z, 0) ((z̄, 0) resp.) ∈ R1. Therefore,

zj = (z, 0)(0, 1) = (0, z) = (0, 1)(z̄, 0) = jz̄. �

Note that R is a subring of R1. If z ∈ R, then z = (z, 0) ∈ R1 and
zτ = (z̄, 0) ∈ R1. Therefore

zj = (z, 0)(0, 1) = (0, z) = (0, 1)(z̄, 0) = jzτ .

Let z = (a, b) ∈ R1. Then we have zj = (a, b)(0, 1) = (−b, a) and jzτ =
(0, 1)(ā,−b) = (b, a). So, if zj = jzτ , then b = −b = 0. Thus, z = (a, 0) = a ∈
R. Hence, if z ∈ R1, then

(3.3) zj = jzτ

if and only if z ∈ R ⊂ R1. In other word, Lemma 3.1 shows that zj = jz̄ for
every z ∈ R. Now, denote A = (aij) ∈ Mn(R) for every A = (aij) ∈ Mn(R).
Then

jA = (jaij) = (aijj) = Aj.

Also, for every (a, b) ∈ R1,

(a, b) = (a, 0) + (0, b) = (a, 0) + j(b̄, 0).

Therefore, for every z ∈ R1, there exist z1, z2 ∈ R such that z = z1 + jz2.
Consequently, for every Z ∈ Mn(R1), there exist Z1, Z2 ∈ Mn(R) such that
Z = Z1 + jZ2.
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Next, we define

J =

[
0 −In
In 0

]
.

Proposition 3.2. Define Ψ : Mn(R1)→M2n(R) by

Ψ(A+ jB) =

(
A −B
B A

)
, (A,B ∈Mn(R)).

Then Ψ is an injective homomorphism and

Ψ(Mn(R1)) = {N ∈M2n(R) | JN = NJ }.

Proof. Since for every A1, A2, B1, B2 ∈Mn(R),

Ψ((A1 + jB1)(A2 + jB2))

= Ψ(A1A2 +A1jB2 + jB1A2 + jB1jB2)

= Ψ((A1A2 + jA1B2 + jB1A2 −B1B2)) (by Lemma 3.1)

= Ψ(A1A2 −B1B2 + j(A1B2 +B1A2))

=

(
A1A2 −B1B2 −A1B2 +B1A2

B1A2 +A1B2 −B1B2 +A1A2

)
=

(
A1 −B1

B1 A1

)(
A2 −B2

B2 A2

)
= Ψ(A1 + jB1)Ψ(A2 + jB2),

Ψ is a homomorphism. Furthermore, Ker(Ψ) = {0}, which shows that Ψ is
injective.

Now, suppose

N =

(
A C
B D

)
∈M2n(R1),

where A,B,C,D ∈Mn(R). Then we have

JN =

(
0 −In
In 0

)(
A C
B D

)
=

(
−B −D
A C

)
and

NJ =

(
A C
B D

)(
0 −In
In 0

)
=

(
C −A
D −B

)
.

Therefore, JN = NJ if and only if C = −B and D = A. Hence

Ψ(Mn(R1) =

{(
A −B
B A

)
| A,B ∈Mn(R)

}
= {N ∈M2n(R) | JN = NJ }.

�

Definition 3.3. Define detR : Mn(R)→ R by

detR((aij)) =
∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n)



420 P. E. PUTRI AND L. P. WIJAYA

with sgn(σ) is a sign function of permutation and detR1
: Mn(R1)→ R by

detR1
= detRΨ.

Lemma 3.4. The multiplicative property holds for detR1
.

Proof. Since Ψ is a homomorphism by Lemma 3.2, the result follows. �

Lemma 3.5. Extend τ : R1 → R1 to τ : Mn(R1) → Mn(R1) by A + jB 7→
At − jBt for every A,B ∈Mn(R)). Then

(i) τ is an anti-automorphism of Mn(R1),

(ii) Ψ(Mτ ) = Ψ(M)
t

(M ∈Mn(R1)),

(iii) detR1
(M) = detR1

(M) (M ∈Mn(R1)).

Proof. (i) For every A1, A2, B1, B2 ∈Mn(R),

((A1 + jB1)(A2 + jB2))τ

= (A1A2 +A1jB2 + jB1A2 + jB1jB2)τ

= (A1A2 + jA1B2 + jB1A2 −B1B2)τ (by Lemma 3.1)

= (A1A2 −B1B2 + j(A1B2 +B1A2))τ

= (A1A2 −B1B2)t − j(A1B2 +B1A2)t,

(A1 + jB1)τ (A2 + jB2)τ = (A2
t − jBt2)(A1 − jBt1)

= A2
t
A1

t −A2
t
jBt1 − jBt2A1

t
+ jBt2jB

t
1

= A2
t
A2

t −B2
t
Bt1 − j(At2Bt1 +Bt2A1

t
).

(ii) Let M = A+ jB ∈Mn(R1) (A,B ∈Mn(R)). Then

Ψ(Mτ ) = Ψ(At − jBt) =

[
At B

t

−Bt At

]
= Ψ(M)

t
.

(iii) Let M = A+ jB ∈Mn(R1) (A,B ∈Mn(R)). Notice that

Ψ(Mτ ) = Ψ(A
t − jBt) =

[
A
t

B
t

−Bt At

]
and

(Ψ(Mτ ))t =

[
A −B
B A

]
.

Therefore, we have

detRΨ(M) = detR

([
A −B
B A

])
= detR

([
0 In
−In 0

] [
A −B
B A

] [
0 −In
In 0

])
= detR

([
A −B
B A

])
= detR(Ψ(Mτ )t)
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= detR

(
Ψ(M)

)
= detR(Ψ(M)). �

Now, when R = R, we will obtain R1 = C by the Cayley-Dickson process.
Therefore, every element in C can be expressed as a + ib where a, b ∈ R and
i = (0, 1). Next, we will apply the Cayley-Dickson process to obtain R2 = H
from C. Similarly, every element in H can be expressed as a+jb where a, b ∈ C
and j = (0, 1). Note that we have zj = jz̄ for every z ∈ C. By applying
Proposition 3.2, we have the following.

Corollary 3.6. Define Ψ1 : Mn(C)→M2n(R) by

Ψ1(C + iD) =

(
C −D
D C

)
, (C,D ∈Mn(R)).

Then Ψ1 is an injective homomorphism and

Ψ1(Mn(C)) = {P ∈M2n(R) | JP = PJ }.
Corollary 3.7. Define Ψ2 : Mn(H)→M2n(C) by

Ψ2(A+ jB) =

(
A −B
B A

)
, (A,B ∈Mn(C)),

where A denote the conjugate of A ∈ Mn(C). Then Ψ2 is an injective homo-
morphism and

Ψ2(Mn(H)) = {N ∈M2n(C) | JN = NJ }.
Based on our notation, the Study determinant is well-known as detC. Corol-

lary 3.6 and Corollary 3.7 are crucial for the concept of Study determinant.
We refer [1] for further information of Study determinant.

We now give a relationship between the Cayley-Dickson process and a gen-
eralization of the Study determinant. It seems that the relation is natural but
we need an additional bijection f : R2 → R2 to show the connection between
the multiplication defined in the Cayley-Dickson process (or the multiplication
operation defined in 3.1) and the standard matrix multiplication.

Proposition 3.8. Let Ω = (α, β) ∈ R2, where α, β ∈ R1. Then f : R2 → R2

with f(α, β) = (β, α) satisfies N2 = det Ψπf .

Proof. Let Ω = (α, β) = (((a, b), (c, d)), ((e, f), (g, h))) where a, b, c, d, e, f, g, h
∈ R. By applying f to Ω and using (2.1), (2.2), and (2.3) to each term of the
result of determinant of Ψπf(α), for example aāāa = aāaā, we have

detRΨπf(Ω) = detR


c a −d̄ −b̄
−ā c̄ −b̄ d̄
d b c̄ ā
b −d −a c

 = (aā+ bb̄+ cc̄+ dd̄)2 = N2(α).

�

Finally, we give a commutative diagram to show the relation between our
generalization of the Study determinant and the Cayley-Dickson process. The
Proposition 3.8 shows that the following diagram is commutative.
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R2 ×R2 R̃× R̃ M2(R1)×M2(R1) M4(R)×M4(R) R×R

R2 R̃ M2(R1) M4(R) R

πf×πf

CD ?

Ψ×Ψ

[·][·]

det× det

[·][·] [·][·]

πf

N2

Ψ det

Here, “CD” denote the Cayley-Dickson multiplication, [·][·] denote the standard
matrix multiplication and N2(Ω) means (N(Ω))2 for every Ω ∈ R2.
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