Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터 지원사업의 연구결과로 수행되었음(IITP-2020-2018-0-01431).
References
- V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, "Playing atari with deep reinforcement learning," arXiv preprint arXiv:1312.5602, 2013.
- B. R. Kiran, I, Sobh, V. Talpaert., P. Mannion, A. A. A. Sallab, S. Yogamani, and P. Perez, "Deep reinforcement learning for autonomous driving: A survey," arXiv preprint arXiv:2002.00444, 2020.
- J. Boyan and M. Littman, "Packet routing in dynamically changing networks: A reinforcement learning approach," Advances in Neural Information Processing Systems, pp.671-678, 1994.
- L. Nguyen, Z. Yang, J. Zhu, J. Li, and F. Jin, "Coordinating disaster emergency response with heuristic reinforcement learning," arXiv preprint arXiv:1811.05010, 2018
- J. Sharma, P. A. Andersen, O. C. Granmo, and M. Goodwin, "Deep Q-Learning with Q-Matrix transfer learning for novel fire evacuation environment," IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020.
- H. R. Lee and T. Lee, "Multi-agent reinforcement learning algorithm to solve a partially-observable multi-agent problem in disaster response," European Journal of Operational Research, Vol.291, No.1, pp.296-308, 2021. https://doi.org/10.1016/j.ejor.2020.09.018
- C. Skinner and S. Ramchurn, "The robocup rescue simulation platform," In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1, pp.1647-1648, May 2010.
- T. Korhonen and S. Hostikka, "Fire dynamics simulator with evacuation: Fds+ Evac: Technical reference and user's guide," 2009.
- P. I. Wojcik and M. Kurdziel, "Training neural networks on high-dimensional data using random projection," Pattern Analysis and Applications, Vol.22, No.3, pp.1221-1231. 2019. https://doi.org/10.1007/s10044-018-0697-0
- B. Kovalerchu, B. Agarwal, and D. C. Kalla, "Solving Nonimage Learning Problems by Mapping to Images," International Conference Information Visualization, pp.264-269, 2020.
- L. Buturovic and D. Miljkovic, "A novel method for classification of tabular data using convolutional neural networks," BioRxiv, 2020.
- A. Sharma, E. Vans, D. Shigemizu, K. A. Boroevich, and T. Tsunoda, "DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture," Scientific Reports, Vol.9, No.1, pp.1-7, 2019. https://doi.org/10.1038/s41598-018-37186-2
- A. Sharma and D. Kumar, "Non-image data classification with convolutional neural networks," arXiv preprint arXiv: 2007.03218, 2020.
- A. Goyal, "Multi-agent deep reinforcement learning for robocup rescue simulator," The Graduate School of The University of Texas at Austin, May 2020.
- G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, "Openai gym," arXiv preprint arXiv:1606.01540, 2016.
- S. Mika, B. Scholkopf, A. Smola, K. R. Muller, M. Scholz, and G. Ratsch, "Kernel PCA and de-noising in feature spaces," Advances in Neural Information Processing Systems, Vol.11, pp.536-542, 1998.
- scikit-learn, sklearn.preprocessing.MinMaxScaler [Internet], https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
- KISTI, NEURON computing environment [Internet], https://www.ksc.re.kr/mobile/ggspcpt/neuron
- G. M. Kurtzer, V. Sochat, and M. W. Bauer, "Singularity: Scientific containers for mobility of compute," PloS one, Vol.12, No.5, e0177459, 2017. https://doi.org/10.1371/journal.pone.0177459
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, and A. Desmaison, "Pytorch: An imperative style, high-performance deep learning library," In Advances in Neural Information Processing Systems, pp.8026-8037, 2019.
- O. Kramer, "Scikit-learn," In Machine Learning for Evolution Strategies, pp.45-53. Springer, Cham, 2016.