DOI QR코드

DOI QR Code

시험발사체 궤적 및 낙하점 분산 분석

Analysis on Trajectory and Impact Point Dispersion of Test Launch Vehicle

  • 투고 : 2021.03.22
  • 심사 : 2021.05.21
  • 발행 : 2021.08.01

초록

본 논문은 시험발사체의 비행궤적 및 낙하점 분산 분석에 대해 다룬다. 2018년 11월의 시험발사체 비행시험 전/후에 수행한 비행궤적 및 낙하점 분산 분석 과정을 설명하고 비행시험 결과와의 비교를 통해 분산 분석 방안이 적절하였음을 보인다. 발사체의 궤적 및 낙하점 분산은 발사체 성능 오차 요인 및 대기권에서의 바람 영향을 고려한 6자유도 몬테카를로 시뮬레이션을 통해 이루어진다. 이와 같이 사전에 분석한 결과를 토대로 비행시험 전에 낙하 안전 영역을 설정한다. 결과적으로, 시험발사체는 사전에 분석한 궤적 및 낙하점 분산 범위 내에서 안전하게 비행하였다.

This paper considers the trajectory and impact point dispersion analysis of the test launch vehicle (TLV). The analysis, which performed before and after its flight test on November 28, 2018, is described and verified by comparing with the flight test results. The six degree-offreedom (DOF) simulation is used to compute the dispersion of the trajectory, attitude, and impact point, where the launch vehicle performance variations and wind effects during the atmospheric phase are included. The impact area to guarantee the flight safety is determined using the results of the dispersion analysis. The flight test results confirm that the safe flight of TLV is performed within the predicted dispersion boundary.

키워드

참고문헌

  1. Song, E. J., Cho, S. and Sun, B. C., "Reentry Motion and Impact Points Analysis of the Jettisoned Elements of a 3-stage Satellite Launch Vehicle," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2016, pp. 930~931.
  2. Song, E. J. and Roh, W. R., "Impact Point Dispersion Analysis of Re-entry Separated Stage of Space Launch Vehicle," The Korean Space Science Society Fall Conference, October 2006, p. 48.
  3. Song, E. J. and Roh, W. R., "Re-entry Motion Analysis of Separated Payload Fairings," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2006, pp. 464~468.
  4. Ahn, J. M., Roh, W. R., Park, J. J. and Cho, G. W., "Performance Analysis and Flight Results of KSR-III Rocket," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 32, No. 1, 2004, pp. 106~111. https://doi.org/10.5139/JKSAS.2004.32.1.106
  5. Lee, S. I., Cho, S. and Sun, B. C., "KSLV-II Test Launch Vehicle Flight Trajectory Data," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2019, pp. 319~320.
  6. Song, E. J., Cho, S. and Sun, B. C., "Trajectory and Impact Point Dispersion Analysis for Test Launch Vehicle," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2019, pp. 321~322.
  7. Cho, S. and Sun, B., "A Study on Load Relief Attitude Command Design of Launch Vehicle Considering Upper Wind," Proceeding of The 15th Space Launch Vehicle Technique Symposium, December 2015, pp. 898~899.
  8. Bryson, A. E. and Ho, Y. C., Applied Optimal Control: Optimization, Estimation and Control, Paperback Bunko, 1975.
  9. White, P., Earth Global Reference Atmospheric Model (GRAM) 2016, NASA/MSFC, 2016.
  10. Hanson, J. M. and Hall, C. E., "Learning about Ares I from Monte Carlo simulation," Proceeding of AIAA Guidance, Navigation and Control Conference and Exhibit, August 2008, AIAA 2008-6622.
  11. Ahn, J. M., Roh, W. R., Lee, J. H. and Park, J. J., "Simulation and Trajectory Analysis of Atmospheric Reentry for Space Station Mir," 2nd Symposium on Space Launch Technology, March 2001.
  12. Rao, P. P. and Woeste, M. A., "Monte Carlo analysis of satellite debris footprint dispersion," Proceeding of Atmospheric Flight Mechanics Conference, January 1979, AIAA Paper 79-1628.
  13. Mrozinski, R. B., "NASA pre-event debris footprint estimates for the deorbit of Space Station MIR," Proceeding of the international workshop "MIR deorbit", May 2001.