DOI QR코드

DOI QR Code

Rotor Hub Vibration Reduction Analysis Applying Individual Blade Control

개별 블레이드 조종을 통한 로터 허브 진동 저감 해석

  • Received : 2021.02.28
  • Accepted : 2021.05.21
  • Published : 2021.08.01

Abstract

Through analytical method based on S-76 model, the level of rotor hub vibration reduction was analyzed according to higher harmonic actuating by individual blade control. The higher harmonic actuating method for individual blades was divided into a method of generating an additional actuating force from the pitch-link in the rotating part and generating actuating force through the active trailing edge flap control of the blade. In the 100kts forward flight conditions, the hub load analysis was performed by changing the phase angle of 15 degree for the 2P/3P/4P/5P harmonic actuation for individual blades. Through the harmonic actuation results, the sensitivity of the rotor system according to the actuating conditions was analyzed, and the T-matrix representing the characteristics of the rotor system was derived based on this analysis result. And through this T-matrix, optimal higher harmonic actuating condition was derived to minimize hub vibration level for flight condition. In addition, the effect on the performance of the rotor system and the pitch-link load under minimum hub vibration condition, as well as the noise influence through the noise analysis were confirmed.

S -76 모델을 기준으로 해석을 통해 개별 블레이드에 대한 고조화 가진에 따른 로터 허브 진동 수준을 분석하였다. 개별 블레이드에 대한 고조화 가진 방법은 회전부에 있는 피치링크 자체에서 추가적인 가진력을 발생하는 방법(Actuating by Individual Pitch-link)과 블레이드 능동 뒷전 플랩조절을 통해 가진력을 발생하는 방법(Active Trailing Edge Flap)으로 구분하였다. 100kts의 전진비행 조건에서 개별 블레이드에 대한 2P/3P/4P/5P 조화 가진을 15도의 위상각을 변경시켜가며 허브 하중 해석을 수행하였다. 그 결과를 통해 가진 조건에 따른 로터 시스템의 민감도를 확인하였으며 이 정보를 기반으로 로터 시스템의 특성을 나타내는 전달 행렬(T-matrix)을 구성하였다. 그리고 전달 행렬을 통해 비행조건에 대해 허브 진동 수준을 최소화하는 최적의 고조화 가진 조건을 도출하였다. 그리고 최소 허브 진동 조건에서 로터 시스템의 성능 및 피치링크 하중에 대한 영향성과 더불어 소음해석을 통한 소음 영향성도 확인하였다.

Keywords

Acknowledgement

이 논문은 과학기술정보통신부 한국항공우주연구원 연구운영비지원사업(기본사업)의 지원을 받아 수행된 연구 결과입니다. (과제명: 다중 전기추진 프로펠러 및 허브시스템 기술연구, 과제고유번호: FR21A05)

References

  1. Peak, S., Song, K. and Kim, S., "Current Status of Helicopter Active Vibration Control System and Development Plan," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2013, pp. 888~891.
  2. Steward, W., "Second Harmonic Control of the Helicopter Rotor," Aeronautical Research Council, R&M 2997, London, August 1952.
  3. Bell Helicopter Company, "An Experimental Investigation of a Second Harmonic Feathering Device on the UH-1A Helicopter," U.S. Army Transportation Research Command, Fort Eustis, Virginia, TR62-109, June 1963.
  4. Boeing Company Vertol Division, "Advanced Vibration Development (AVID) Program," Report 107MD09, April 1965.
  5. Kessler, Ch., "Active Rotor Control for Helicopters: Motivation and Survey on Higher Harmonic Control," 36th European Rotorcraft forum, Paris, Paper 045-II, September 2010.
  6. Kessler, Ch., "Active Rotor Control for Helicopters: Individual Blade Control and Swashplateless Rotor Designs," 36th European Rotorcraft forum, Paris, Paper 045-II, September 2010.
  7. Johnson, W., "CAMRAD II Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics," Johnson Aeronautics, Palo Alto, CA, 2007.
  8. Bartels, R., Kuefmann, P. and Kessler, Ch., "Novel Concept for Realizing Individual Blade Control(IBC) for Helicopters," 36th European Rotorcraft forum, Paris, Paper 023, September 2010.
  9. Palacio, F., Colonno, M. R., Aranake, A. C. and Campos, A., "Stanford University Unstructured (SU2): An open-source integrated computational environment for multi-physics simulation and design," 51st AIAA Aerospace Meeting, 2013.
  10. Shinoda, P. M. and Johnson, W., "Performance Results from a Test of an S-76 Rotor in the NASA Ames 80- by 120- Foot Wind Tunnel," 11th Applied Aerodynamics Conference, Monterey, CA, August 1993.
  11. Straub, F. K. and Kennedy, D. K., "Design, Development, Fabrication and Testing of an Active Flap Rotor System," 61st AHS Annual Forum, Grapevine, Texas, June 2005.
  12. Straub, F. K., Anand, V. R., Birchette, T. S. and Fau, B. H., "Wind Tunnel Test of the SMART Active Flap Rotor," 65st AHS Annual Forum, Grapevine, Texas, May 2009.
  13. Brentner, K. and Farasst, F., "Modelling Aerodynamically Generated Sound of Helicopter Rotor," Progress in Aerospace Science, Vol. 30, 2003.