DOI QR코드

DOI QR Code

Temperature jump and concentration slip effects on bioconvection past a vertical porous plate in the existence of nanoparticles and gyrotactic microorganism with inclined MHD

  • Received : 2020.02.10
  • Accepted : 2021.04.14
  • Published : 2021.07.25

Abstract

The paper presents the effects of temperature jump and concentration slip on inclined MHD bioconvection past a vertical porous plate via porous media. The authors have examined how the presence of both nanoparticles and gyrotactic microorganism impact the whole procedure. It is researched that the numerical scheme, called Runge-Kutta fourth fifth order Fehlberg method (RKF45) has been used to solve the governing partial differential equations. The equations are reduced into ordinary differential equations by using suitable similarity transformation. The effects of pertinent parameter for variation in the velocity profile, velocity profile at far field, temperature profile, concentration profile and motile microorganism density profile have been obtained. The results obtained from current study in the concluding part of the paper match to the pre researched data which validate the authenticity of the study.

Keywords

References

  1. Alloui, Z., Nguyen, T.H. and Bilgen, E. (2007), "Numerical investigation of thermo bioconvection in a suspension of gravitactic microorganisms", Int. J. Heat Mass Tran., 50(7-8), 1435-1441. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.008.
  2. Alsaedi, A., Khan, M.I., Farooq, M., Gull, N. and Hayat, T. (2017), "Magnetohydrodynamic (MHD) stratified bioconvection flow of nanofluid due to gyrotactic and microorganisms", Adv. Powder Technol., 28(1), 288-298. https://doi.org/10.1016/j.apt.2016.10.002.
  3. Avramenko, A.A. and Kuznetsov, A.V. (2004), "Stability of a suspension of gyrotactic microorganisms in superimposed fluid and porous layers", Int. Commun. Heat Mass Trans., 31(8), 1057-1066. https://doi.org/10.1016/j.icheatmasstransfer.2004.08.003.
  4. Aziz, A., Khan, W.A. and Pop, I. (2012), "Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganism", Int. J. Therm. Sci, 56, 48-57. https://doi.org/10.1016/j.ijthermalsci.2012.01.011.
  5. Beg, O.A., Uddin, M.J. and Khan, W.A. (2015), "Bioconvective non-Newtonian nanofluid transport in porous media containing micro-organisms in a moving free stream", J. Mech. Med. Biol., 15(5), 1550071.1-1550071.20. https://doi.org/10.1142/S0219519415500712.
  6. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  7. Chakraborty, T., Das, K. and Kundu, P.K. (2017), "Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganism with convective boundary conditions", Alexandria Eng. J., 57(1), 61-71. https://doi.org/10.1016/j.aej.2016.11.011.
  8. Chauhan, D.S. and Agrawal, R. (2012), "Effects of hall current on MHD couette flow in a channel partially filled with a porous medium in a rotating system", Meccanica, 47(2), 405-421. https://doi.org/10.1007/s11012-011-9446-9.
  9. Childress, S., Levandowsky, M. and Spiegel, E.A. (1975), "Pattern formation in a suspension of swimming microorganisms - equations and stability theory", J. Fluid Mech., 69(3), 591-613. https://doi.org/10.1017/S0022112075001577.
  10. Eltaher, M.A., Almalki, T.A., Ahmed, K. and Almitani, K. (2019) "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach," Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/ANR.2019.7.1.039.
  11. Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020) "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM," Adv. Nano Res., 8(4), 83-292. https://doi.org/10.12989/ANR.2020.8.4.283.
  12. Hill, N.A. and Pedley, T.J. (2005), "Bioconvection", Fluid Dyn. Res. 37(1-2), 1-20. https://doi.org/10.1016/j.fluiddyn.2005.03.002.
  13. Hillesdon, A.J. and Pedley, T.J. (1996), "Bioconvection in suspensions of oxytactic bacteria: linear theory", J. Fluid Mech., 324, 223-259. https://doi.org/10.1017/S0022112096007902.
  14. Hussain, M., Naeem, M.N., Taj, M., and Tounsi, A. (2020) "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method," Adv. Nano Res., 8(3), 15-228. https://doi.org/10.12989/ANR.2020.8.3.215.
  15. Jain, S. and Bohra, S. (2016), "Radiation effects in flow through porous medium over a rotating disk with variable fluid properties", Adv. Math. Phys., 2016, 1-12. https://doi.org/10.1155/2016/9671513.
  16. Jain, S. and Choudhary, R. (2015), "Effects of MHD on boundary layer flow in porous medium due to exponentially shrinking sheet with slip", Procedia Engineering, 127, 1203-1210. https://doi.org/10.1016/j.proeng.2015.11.464.
  17. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  18. Khan, U., Ahmed, N. and Mohyud-Din, S.T. (2016), "Influence of viscous dissipation and Joule heating on MHD bio-convection flow over a porous wedge in the presence of nanoparticles and gyrotactic microorganisms", Springer Plus, 5(1), 1-18 https://doi.org/10.1186/s40064-016-3718-8.
  19. Khan, W.A. and Makinde, O.D. (2014), "MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet", Int. J. Therm. Sci., 81, 118-124. https://doi.org/10.1016/j.ijthermalsci.2014.03.009.
  20. Khan, W.A., Makinde, O.D. and Khan, Z.H. (2014), "MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip", Int. J. Heat Mass Tran., 74, 285-291. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.026.
  21. Kuznetsov A.V. (2010), "The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms", Int. Commun. Heat Mass Tran., 37(10), 1421-1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015.
  22. Kuznetsov A.V. (2011), "Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability", Nanosc. Res. Lett., 6(1), 1-13. https://doi.org/10.1186/1556-276X-6-100.
  23. Makinde, O.D. and Animasaun, I.L. (2016), "Bioconvection in MHD nanofluid flow with non-linear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution", Int. J. Therm. Sci., 109, 159-171. https://doi.org/10.1016/j.ijthermalsci.2016.06.003.
  24. Makinde, O.D. and Animasaun, I.L. (2016), "Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution", J. Mol. Liq., 221, 733-743. https://doi.org/10.1016/j.molliq.2016.06.047.
  25. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A., Tounsi, A. and Benrahou, K.H. (2020) "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory," Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/ANR.2020.8.4.293.
  26. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  27. Mutuku, W.N. and Makinde, O.D. (2014), "Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms", Comput. Fluids, 95, 88-97. https://doi.org/10.1016/j.compfluid.2014.02.026.
  28. Nield, D.A and Kuznetsov, A.V. (2006), "The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid layer: Oscillatory convection", Int. J. Therm. Sci., 45(10), 990-997. https://doi.org/10.1016/j.ijthermalsci.2006.01.007.
  29. Raees, A., Xu, H., Sun, Q. and Pop, I. (2015), "Mixed convection in gravity-driven nano-liquid film containing both nanoparticles and gyrotactic microorganisms", Appl. Math. Mech., 36(2), 163-178. https://doi.org/10.1007/s10483-015-1901-7.
  30. Raju, C.S.K., Hoque, M.M. and Sivasankar, T. (2017), "Radiative flow of Casson fluid over a moving wedge filled with gyrotactic microorganisms", Adv. Powder Technol., 28(2), 575-583. https://doi.org/10.1016/j.apt.2016.10.026.
  31. Siddiqa, S., Hina, G., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R.S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Trans., 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076.
  32. Tausif, M.D., Das, K. and Kundu, P.K. (2016), "Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles", J. Mole. Liq., 220, 518-526. https://doi.org/10.1016/j.molliq.2016.04.097.
  33. Uddin, M.J., Kabir, M.N. and Beg, O.A. (2016), "Computational investigation of Stefan blowing and multiple-slip effects on buoyancy-driven bioconvection nanofluid flow with microorganisms," Int. J. Heat Mass Trans., 95, 116-130. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.015.
  34. Xu, H. and Pop, I. (2014), "Mixed convection flow of a nanofluid over a stretching surface with uniform free stream in the presence of both nanoparticles and gyrotactic microorganisms", Int. J. Heat Mass Trans., 75, 610-623. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.086.
  35. Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Bedia, E.A., Mahmoud, S.R., and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete., 26(1), 63-74. http://doi.org/10.12989/cac.2020.26.1.063.