References
- Alloui, Z., Nguyen, T.H. and Bilgen, E. (2007), "Numerical investigation of thermo bioconvection in a suspension of gravitactic microorganisms", Int. J. Heat Mass Tran., 50(7-8), 1435-1441. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.008.
- Alsaedi, A., Khan, M.I., Farooq, M., Gull, N. and Hayat, T. (2017), "Magnetohydrodynamic (MHD) stratified bioconvection flow of nanofluid due to gyrotactic and microorganisms", Adv. Powder Technol., 28(1), 288-298. https://doi.org/10.1016/j.apt.2016.10.002.
- Avramenko, A.A. and Kuznetsov, A.V. (2004), "Stability of a suspension of gyrotactic microorganisms in superimposed fluid and porous layers", Int. Commun. Heat Mass Trans., 31(8), 1057-1066. https://doi.org/10.1016/j.icheatmasstransfer.2004.08.003.
- Aziz, A., Khan, W.A. and Pop, I. (2012), "Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganism", Int. J. Therm. Sci, 56, 48-57. https://doi.org/10.1016/j.ijthermalsci.2012.01.011.
- Beg, O.A., Uddin, M.J. and Khan, W.A. (2015), "Bioconvective non-Newtonian nanofluid transport in porous media containing micro-organisms in a moving free stream", J. Mech. Med. Biol., 15(5), 1550071.1-1550071.20. https://doi.org/10.1142/S0219519415500712.
- Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
- Chakraborty, T., Das, K. and Kundu, P.K. (2017), "Framing the impact of external magnetic field on bioconvection of a nanofluid flow containing gyrotactic microorganism with convective boundary conditions", Alexandria Eng. J., 57(1), 61-71. https://doi.org/10.1016/j.aej.2016.11.011.
- Chauhan, D.S. and Agrawal, R. (2012), "Effects of hall current on MHD couette flow in a channel partially filled with a porous medium in a rotating system", Meccanica, 47(2), 405-421. https://doi.org/10.1007/s11012-011-9446-9.
- Childress, S., Levandowsky, M. and Spiegel, E.A. (1975), "Pattern formation in a suspension of swimming microorganisms - equations and stability theory", J. Fluid Mech., 69(3), 591-613. https://doi.org/10.1017/S0022112075001577.
- Eltaher, M.A., Almalki, T.A., Ahmed, K. and Almitani, K. (2019) "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach," Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/ANR.2019.7.1.039.
- Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020) "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM," Adv. Nano Res., 8(4), 83-292. https://doi.org/10.12989/ANR.2020.8.4.283.
- Hill, N.A. and Pedley, T.J. (2005), "Bioconvection", Fluid Dyn. Res. 37(1-2), 1-20. https://doi.org/10.1016/j.fluiddyn.2005.03.002.
- Hillesdon, A.J. and Pedley, T.J. (1996), "Bioconvection in suspensions of oxytactic bacteria: linear theory", J. Fluid Mech., 324, 223-259. https://doi.org/10.1017/S0022112096007902.
- Hussain, M., Naeem, M.N., Taj, M., and Tounsi, A. (2020) "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method," Adv. Nano Res., 8(3), 15-228. https://doi.org/10.12989/ANR.2020.8.3.215.
- Jain, S. and Bohra, S. (2016), "Radiation effects in flow through porous medium over a rotating disk with variable fluid properties", Adv. Math. Phys., 2016, 1-12. https://doi.org/10.1155/2016/9671513.
- Jain, S. and Choudhary, R. (2015), "Effects of MHD on boundary layer flow in porous medium due to exponentially shrinking sheet with slip", Procedia Engineering, 127, 1203-1210. https://doi.org/10.1016/j.proeng.2015.11.464.
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
- Khan, U., Ahmed, N. and Mohyud-Din, S.T. (2016), "Influence of viscous dissipation and Joule heating on MHD bio-convection flow over a porous wedge in the presence of nanoparticles and gyrotactic microorganisms", Springer Plus, 5(1), 1-18 https://doi.org/10.1186/s40064-016-3718-8.
- Khan, W.A. and Makinde, O.D. (2014), "MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet", Int. J. Therm. Sci., 81, 118-124. https://doi.org/10.1016/j.ijthermalsci.2014.03.009.
- Khan, W.A., Makinde, O.D. and Khan, Z.H. (2014), "MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip", Int. J. Heat Mass Tran., 74, 285-291. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.026.
- Kuznetsov A.V. (2010), "The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms", Int. Commun. Heat Mass Tran., 37(10), 1421-1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015.
- Kuznetsov A.V. (2011), "Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability", Nanosc. Res. Lett., 6(1), 1-13. https://doi.org/10.1186/1556-276X-6-100.
- Makinde, O.D. and Animasaun, I.L. (2016), "Bioconvection in MHD nanofluid flow with non-linear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution", Int. J. Therm. Sci., 109, 159-171. https://doi.org/10.1016/j.ijthermalsci.2016.06.003.
- Makinde, O.D. and Animasaun, I.L. (2016), "Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution", J. Mol. Liq., 221, 733-743. https://doi.org/10.1016/j.molliq.2016.06.047.
- Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A., Tounsi, A. and Benrahou, K.H. (2020) "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory," Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/ANR.2020.8.4.293.
- Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
- Mutuku, W.N. and Makinde, O.D. (2014), "Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms", Comput. Fluids, 95, 88-97. https://doi.org/10.1016/j.compfluid.2014.02.026.
- Nield, D.A and Kuznetsov, A.V. (2006), "The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid layer: Oscillatory convection", Int. J. Therm. Sci., 45(10), 990-997. https://doi.org/10.1016/j.ijthermalsci.2006.01.007.
- Raees, A., Xu, H., Sun, Q. and Pop, I. (2015), "Mixed convection in gravity-driven nano-liquid film containing both nanoparticles and gyrotactic microorganisms", Appl. Math. Mech., 36(2), 163-178. https://doi.org/10.1007/s10483-015-1901-7.
- Raju, C.S.K., Hoque, M.M. and Sivasankar, T. (2017), "Radiative flow of Casson fluid over a moving wedge filled with gyrotactic microorganisms", Adv. Powder Technol., 28(2), 575-583. https://doi.org/10.1016/j.apt.2016.10.026.
- Siddiqa, S., Hina, G., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R.S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Trans., 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076.
- Tausif, M.D., Das, K. and Kundu, P.K. (2016), "Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles", J. Mole. Liq., 220, 518-526. https://doi.org/10.1016/j.molliq.2016.04.097.
- Uddin, M.J., Kabir, M.N. and Beg, O.A. (2016), "Computational investigation of Stefan blowing and multiple-slip effects on buoyancy-driven bioconvection nanofluid flow with microorganisms," Int. J. Heat Mass Trans., 95, 116-130. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.015.
- Xu, H. and Pop, I. (2014), "Mixed convection flow of a nanofluid over a stretching surface with uniform free stream in the presence of both nanoparticles and gyrotactic microorganisms", Int. J. Heat Mass Trans., 75, 610-623. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.086.
- Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Bedia, E.A., Mahmoud, S.R., and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete., 26(1), 63-74. http://doi.org/10.12989/cac.2020.26.1.063.