References
- Al-mashhadani, M., Canpolat, O., Aygormez, Y., Uysal, M. and Erdem, S. (2018), "Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites", Constr. Build. Mater., 167, 505-513. https://doi.org/10.1016/j.conbuildmat.2018.02.061.
- Altwair, N.M., Megat Johari, M.A. and Saiyid Hashim, S.F. (2012), "Flexural performance of green engineered cementitious composites containing high volume of palm oil fuel ash", Constr. Build. Mater., 37, 518-525. https://doi.org/10.1016/j.conbuildmat.2012.08.003.
- Ammasi, A.K. (2018), "Strength and durability of high volume fly ash in engineered cementitious composites", Mater. Today: Proc., 5(11), 24050-24058. https://doi.org/10.1016/j.matpr.2018.10.198.
- Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Moropoulou, A. (2019), "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concrete, 24(4), 329-345. https://doi.org/10.12989/cac.2019.24.4.329.
- Bai, J., Wild, S., Ware, J. and Sabir, B. (2003), "Using neural networks to predict workability of concrete incorporating metakaolin and fly ash", Adv. Eng. Softw., 34(11-12), 663-669. https://doi.org/10.1016/s0965-9978(03)00102-9.
- Bang, J.W., Ganesh Prabhu, G., Jang, Y.I. and Kim, Y.Y. (2015), "Development of ecoefficient engineered cementitious composites using supplementary cementitious materials as a binder and bottom ash aggregate as fine aggregate", Int. J. Polym. Sci., 2015, Article ID 681051. https://doi.org/10.1155/2015/681051.
- Bilgehan, M. and Turgut, P. (2010), "The use of neural networks in concrete compressive strength estimation", Comput. Concrete, 7(3), 271-283. https://doi.org/10.12989/cac.2010.7.3.271.
- Camoes, A. and Martins, F.F. (2017), "Compressive strength prediction of CFRP confined concrete using data mining techniques", Comput. Concrete, 19(3), 233-241. https://doi.org/10.12989/cac.2017.19.3.233.
- Chen, G., Wang, H., Bezold, A., Broeckmann, C., Weichert, D. and Zhang, L. (2019), "Strengths prediction of particulate reinforced metal matrix composites (PRMMCs) using direct method and artificial neural network", Compos. Struct., 223(1), 110951. https://doi.org/10.1016/j.compstruct.2019.110951.
- Chopra, P., Sharma, R.K. and Kumar, M. (2016), "Prediction of compressive strength of concrete using artificial neural network and genetic programming", Adv. Mater. Sci. Eng., Article ID 7648467, 1-10. https://doi.org/10.1155/2016/7648467.
- Dao, D., Ly, H.B., Trinh, S., Le, T.T. and Pham, B. (2019), "Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete", Mater., 12(6), 983. https://doi.org/10.3390/ma12060983.
- Ekaputri, J.J. and Junaedi, S. (2017), "Effect of curing temperature and fiber on metakaolin-based geopolymer", Procedia Eng., 171, 572-583. https://doi.org/10.1016/j.proeng.2017.01.376.
- Farooq, M., Bhutta, A. and Banthia, N. (2019), "Tensile performance of eco-friendly ductile geopolymer composites (EDGC) incorporating different micro-fibers", Cement Concrete Compos., 103, 183-192. https://doi.org/10.1016/j.cemconcomp.2019.05.004.
- Garson, G.D. (1991), "Interpreting neural network connection weights", AI Expert, 6, 47-51.
- Hossain, K.M.A., Anwar, M.S. and Samani, S.G. (2016), "Regression and artificial neural network models for strength properties of engineered cementitious composites", Neur. Comput. Appl., 29(9), 631-645. https://doi.org/10.1007/s00521-016-2602-3.
- Jayaseelan, R., Pandulu, G. and Ashwini, G. (2019), "Neural networks for the prediction of fresh properties and compressive strength of flowable concrete", J. Urban Environ. Eng., 13(1), 183-197. https://doi.org/10.4090/juee.2019.v13n1.183197bagha.
- Kan, L., Zhang, L., Zhao, Y. and Wu, M. (2020), "Properties of polyvinyl alcohol fiber reinforced fly ash based Engineered Geopolymer Composites with zeolite replacement", Constr. Build. Mater., 231, 117161. https://doi.org/10.1016/j.conbuildmat.2019.117161.
- Kan, L.L., Wang, W.S., Liu, W.D. and Wu, M. (2020), "Development and characterization of fly ash based PVA fiber reinforced Engineered Geopolymer Composites incorporating metakaolin", Cement Concrete Compos., 108, 103521. https://doi.org/10.1016/j.cemconcomp.2020.103521.
- Khademi, F., Akbari, M. and Jamal, S.M. (2017), "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete", Front. Struct. Civil Eng., 11, 90-99. https://doi.org/10.1007/s11709-016-0363-9.
- Krishnaraja, A.R. and Kandasamy, S. (2017), "Flexural performance of engineered cementitious composite layered reinforced concrete beams", Arch. Civil Eng., 63(4), 173-188. https://doi.org/10.1515/ace-2017-0048.
- Kumar, B. and Topping, B.H. (1999), Artificial Intelligence Applications in Civil and Structural Engineering, Civil-Comp.
- Li, V.C. (2003), "Engineered cementitious composites (ECC): a review of the material and its applications", J. Adv. Concrete Technol., 1(3), 215-230. https://doi.org/10.3151/jact.1.215.
- Li, V.C. (2019), Engineered Cementitious Composites (ECC): Bendable Concrete For Sustainable And Resilient Infrastructure, Springer Nature.
- Li, W. and Du, H. (2018), "Properties of pva fiber reinforced geopolymer mortar", International Congress on Polymers in Concrete (ICPIC 2018), 557-564. https://doi.org/10.1007/978-3-319-78175-4_71.
- Ling, Y., Wang, K., Li, W., Shi, G. and Lu, P. (2019), "Effect of slag on the mechanical properties and bond strength of fly ash-based engineered geopolymer composites", Compos. Part B, 231, 117161. https://doi.org/10.1016/j.compositesb.2019.01.092.
- Lingam, A. and Karthikeyan, J. (2014), "Prediction of compressive strength for HPC mixes containing different blends using ANN", Comput. Concrete, 13(5), 621-632. https://doi.org/10.12989/cac.2014.13.5.621.
- Liu, F., Ding, W. and Qiao, Y (2020), "An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power", Front. Struct. Civil Eng., 14, 1299-1315. https://doi.org/10.1007/s11709-020-0712-6.
- Liu, J.C. and Zhang, Z. (2020), "Neural network models to predict explosive spalling of PP fiber reinforced concrete under heating", J. Build. Eng., 32, 101472. https://doi.org/10.1016/j.jobe.2020.101472.
- Mohammed, B.S., Khed, V.C. and Liew, M.S. (2018), "Optimization of hybrid fibres in engineered cementitious composites", Constr. Build. Mater., 190, 24-37. https://doi.org/10.1016/j.conbuildmat.2018.08.188.
- Nematollahi, B., Ranade, R., Sanjayan, J. and Ramakrishnan, S. (2017), "Thermal and mechanical properties of sustainable lightweight strain hardening geopolymer composites", Arch. Civil Mech. Eng., 17(1), 55-64. https://doi.org/10.1016/j.acme.2016.08.002.
- Nematollahi, B., Sanjayan, J. and Shaikh, F.U.A. (2014), "Comparative deflection hardening behavior of short fiber reinforced geopolymer composites", Constr. Build. Mater., 70, 54-64. https://doi.org/10.1016/j.conbuildmat.2014.07.085.
- Nematollahi, B., Sanjayan, J. and Shaikh, F.U.A. (2016), "Matrix design of strain hardening fiber reinforced engineered geopolymer composite", Compos. Part B, 89, 253-265. https://doi.org/10.1016/j.compositesb.2015.11.039.
- Ohno, M. and Li, V.C. (2018), "An integrated design method of engineered geopolymer composite", Cement Concrete Compos., 88, 73-85. https://doi.org/10.1016/j.cemconcomp.2018.02.001.
- Parichatprecha, R. and Nimityongskul, P. (2009), "An integrated approach for optimum design of HPC mix proportion using genetic algorithm and artificial neural networks", Comput. Concrete, 6(3), 253-268. https://doi.org/10.12989/cac.2009.6.3.253.
- Pourfalah, S. (2018), "Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures", Constr. Build. Mater., 158, 921-937. https://doi.org/10.1016/j.conbuildmat.2017.10.077.
- Sheela, K.G. and Deepa, S.N. (2013). "Review on methods to fix number of hidden neurons in neural networks", Math. Prob. Eng., 2013, Article ID 425740. https://doi.org/10.1155/2013/425740.
- Shi, L., Lin, S.T.K., Lu, Y., Ye, L. and Zhang, Y.X. (2018), "Artificial neural network based mechanical and electrical property prediction of engineered cementitious composites", Constr. Build. Mater., 174, 667-674. https://doi.org/10.1016/j.conbuildmat.2018.04.127.
- Shirkhani, A., Davarnia, D. and Azar, B.F. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete, 23(4), 273-279. https://doi.org/10.12989/cac.2019.23.4.273.
- Siddique, R., Aggarwal, P. and Aggarwal, Y. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", Adv. Eng. Softw., 42(10), 780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016.
- Topping, B.H., Neves, L.C. and Barros, R.C. (2008), Trends in Civil and Structural Engineering Computing, Saxe-Coburg Publications.
-
Towards Data Science (2020), Concrete Compressive Strength Prediction using Machine Learning TDS,
- Tugrul, E., Erkan, K., Engin, G. and Ozgur, A. (2013), "Estimation of compression strength of polypropylene fibre reinforced concrete using artificial neural networks", Comput. Concrete, 12(5), 613-625. http://doi.org/10.12989/cac.2013.12.5.613.
- Uneb, G., Omar, S.B., Saad Muhammad, S. and Mohammad M. (2017), "Predicting compressive strength of blended cement concrete with ANNs", Comput. Concrete, 20(6), 627-634. http://doi.org/10.12989/cac.2017.20.6.627.
- Xu, F., Deng, X., Peng, C., Zhu, J. and Chen, J. (2017), "Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites", Constr. Build. Mater., 150, 179-189. http://doi.org/10.1016/j.conbuildmat.2017.05.172.
- Yan, F., Lin, Z., Wang, X., Azarmi, F. and Sobolev, K. (2017), "Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm", Compos. Struct., 161, 441-452. http://doi.org/10.1016/j.compstruct.2016.11.068.
- Yeh, I..C. (2008), "Modeling slump of concrete with fly ash and superplasticizer", Comput. Concrete, 5(6), 559-572. https://doi.org/10.12989/cac.2008.5.6.559.
- Yeh, I.C. (2008), "Prediction of workability of concrete using design of experiments for mixtures", Comput. Concrete, 5(1), 1-20. https://doi.org/10.12989/cac.2008.5.1.001.
- Yu, J. and Leung, C.K.Y. (2017), "Strength improvement of strain-hardening cementitious composites with ultrahigh-volume fly ash", J. Mater. Civil Eng., 29(9), 1-10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001987.
- Yu, J., Yao, J., Lin, X., Li, H., Lam, J. Y.K., Leung, C.K.Y. and Shih, K. (2018), "Tensile performance of sustainable strain-hardening cementitious composites with hybrid pva and recycled pet fibers", Cement Concrete Res., 107, 110-123. https://doi.org/10.1016/j.cemconres.2018.02.013.
- Zahid, M. and Shafiq, N. (2020), "Effects of sand/fly ash and the water/solid ratio on the mechanical properties of engineered geopolymer composite and mix design optimization", Min., 10(4), 333. https://doi.org/10.3390/min10040333.