DOI QR코드

DOI QR Code

Recent Automatic Post Editing Research

최신 기계번역 사후 교정 연구

  • Moon, Hyeonseok (Department of Computer Science and Engineering, Korea University) ;
  • Park, Chanjun (Department of Computer Science and Engineering, Korea University) ;
  • Eo, Sugyeong (Department of Computer Science and Engineering, Korea University) ;
  • Seo, Jaehyung (Department of Computer Science and Engineering, Korea University) ;
  • Lim, Heuiseok (Department of Computer Science and Engineering, Korea University)
  • 문현석 (고려대학교 컴퓨터학과) ;
  • 박찬준 (고려대학교 컴퓨터학과) ;
  • 어수경 (고려대학교 컴퓨터학과) ;
  • 서재형 (고려대학교 컴퓨터학과) ;
  • 임희석 (고려대학교 컴퓨터학과)
  • Received : 2021.05.03
  • Accepted : 2021.07.20
  • Published : 2021.07.28

Abstract

Automatic Post Editing(APE) is the study that automatically correcting errors included in the machine translated sentences. The goal of APE task is to generate error correcting models that improve translation quality, regardless of the translation system. For training these models, source sentence, machine translation, and post edit, which is manually edited by human translator, are utilized. Especially in the recent APE research, multilingual pretrained language models are being adopted, prior to the training by APE data. This study deals with multilingual pretrained language models adopted to the latest APE researches, and the specific application method for each APE study. Furthermore, based on the current research trend, we propose future research directions utilizing translation model or mBART model.

기계번역 사후교정이란, 기계번역 문장에 포함된 오류를 자동으로 교정하기 위해 제안된 연구 분야이다. 이는 번역 시스템과 관계없이 번역문의 품질을 높이는 오류 교정 모델을 생성하는 목적을 가진 연구로, 훈련을 위해 소스문장, 번역문, 그리고 이를 사람이 직접 교정한 문장이 활용된다. 특히, 최신 기계번역 사후교정 연구에서는 사후교정 데이터를 통한 학습을 진행하기 이전에, 사전학습된 다국어 언어모델을 활용하는 방법이 적용되고 있다. 이에 본 논문은 최신 연구들에서 활용되고 있는 다국어 사전학습 언어모델들과 함께, 해당 모델을 도입한 각 연구에서의 구체적인 적용방법을 소개한다. 나아가 이를 기반으로, 번역 모델과 mBART모델을 활용하는 향후 연구 방향을 제안한다.

Keywords

Acknowledgement

This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2018-0-01405) supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation)

References

  1. Park, C., & Lim, H. (2020). Automatic Post Editing Research. Journal of the Korea Convergence Society, 11(5), 1-8. https://doi.org/10.15207/JKCS.2020.11.5.001
  2. Park, C., Yang, Y., Park, K., & Lim, H. (2020). Decoding strategies for improving low-resource machine translation. Electronics, 9(10), 1562. https://doi.org/10.3390/electronics9101562
  3. Chatterjee, R., Freitag, M., Negri, M., & Turchi, M. (2020, November). Findings of the WMT 2020 shared task on automatic post-editing. In Proceedings of the Fifth Conference on Machine Translation, (pp. 646-659).
  4. Koehn, P., Chaudhary, V., El-Kishky, A., Goyal, N., Chen, P. J., & Guzman, F. (2020, November). Findings of the WMT 2020 shared task on parallel corpus filtering and alignment. In Proceedings of the Fifth Conference on Machine Translation, (pp. 726-742).
  5. Specia, L. et al. (2020, November). Findings of the WMT 2020 shared task on quality estimation. In Proceedings of the Fifth Conference on Machine Translation (pp. 743-764).
  6. Pal, S., Herbig, N., Kruger, A., & van Genabith, J. (2018, October). A transformer-based multi-source automatic post-editing system. In Proceedings of the Third Conference on Machine Translation: Shared Task Papers (pp. 827-835).
  7. Ive, J., Specia, L., Szoc, S., Vanallemeersch, T., Van den Bogaert, J., Farah, E., ... & Khalilov, M. (2020, May). A Post-Editing Dataset in the Legal Domain: Do we Underestimate Neural Machine Translation Quality?. In Proceedings of The 12th Language Resources and Evaluation Conference (pp. 3692-3697).
  8. Yang, H., Wang, M., Wei, D., Shang, H., Guo, J., Li, Z., ... & Chen, Y. (2020, November). HW-TSC's Participation at WMT 2020 Automatic Post Editing Shared Task. In Proceedings of the Fifth Conference on Machine Translation (pp. 797-802).
  9. Lopes, A. V., Farajian, M. A., Correia, G. M., Trenous, J., & Martins, A. F. (2019). Unbabel's Submission to the WMT2019 APE Shared Task: BERT-based Encoder-Decoder for Automatic Post-Editing. arXiv preprint arXiv:1905.13068.
  10. Lee, J., Lee, W., Shin, J., Jung, B., Kim, Y. G., & Lee, J. H. (2020, November). POSTECH-ETRI's Submission to the WMT2020 APE Shared Task: Automatic Post-Editing with Cross-lingual Language Model. In Proceedings of the Fifth Conference on Machine Translation (pp. 777-782).
  11. Lee, D. (2020, November). Cross-Lingual Transformers for Neural Automatic Post-Editing. In Proceedings of the Fifth Conference on Machine Translation (pp. 772-776).
  12. Allen, J., & Hogan, C. (2000, April). Toward the development of a post editing module for raw machine translation output: A controlled language perspective. In Third International Controlled Language Applications Workshop (CLAW-00) (pp. 62-71).
  13. Simard, M., Goutte, C., & Isabelle, P. (2007, April). Statistical phrase-based post-editing. In Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference (pp. 508-515).
  14. Shin, J., & Lee, J. H. (2018, October). Multi-encoder transformer network for automatic post-editing. In Proceedings of the Third Conference on Machine Translation: Shared Task Papers (pp. 840-845).
  15. Junczys-Dowmunt, M., & Grundkiewicz, R. (2018). MS-UEdin submission to the WMT2018 APE shared task: Dual-source transformer for automatic post-editing. arXiv preprint arXiv:1809.00188.
  16. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
  17. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.
  18. Pires, T., Schlinger, E., & Garrette, D. (2019). How multilingual is multilingual bert?. arXiv preprint arXiv:1906.01502.
  19. Lample, G., & Conneau, A. (2019). Cross-lingual language model pretraining. arXiv preprint arXiv:1901.07291.
  20. Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzman, F., ... & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.
  21. Wenzek, G., Lachaux, M. A., Conneau, A., Chaudhary, V., Guzman, F., Joulin, A., & Grave, E. (2019). Ccnet: Extracting high quality monolingual datasets from web crawl data. arXiv preprint arXiv:1911.00359.
  22. Conneau, A., Lample, G., Rinott, R., Williams, A., Bowman, S. R., Schwenk, H., & Stoyanov, V. (2018). XNLI: Evaluating cross-lingual sentence representations. arXiv preprint arXiv:1809.05053.
  23. Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad, M., ... & Zettlemoyer, L. (2020). Multilingual denoising pre-training for neural machine translation. Transactions of the Association for Computational Linguistics, 8, 726-742. https://doi.org/10.1162/tacl_a_00343
  24. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461.
  25. Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359. https://doi.org/10.1109/TKDE.2009.191
  26. Correia, G. M., & Martins, A. F. (2019). A simple and effective approach to automatic post-editing with transfer learning. arXiv preprint arXiv:1906.06253.
  27. Jihyung L, WonKee L, Young-Gil K, Jonghyeok L. (2020). Transfer Learning of Automatic Post-Editing with Cross-lingual Language Model. KIISE 2020, 392-394.
  28. Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., ... & Gelly, S. (2019, May). Parameter-efficient transfer learning for NLP. In International Conference on Machine Learning (pp. 2790-2799). PMLR.
  29. Kim, H., Lee, J. H., & Na, S. H. (2017, September). Predictor-estimator using multilevel task learning with stack propagation for neural quality estimation. In Proceedings of the Second Conference on Machine Translation (pp. 562-568).
  30. Park, C., Yang, Y., Lee, C., & Lim, H. (2020). Comparison of the Evaluation Metrics for Neural Grammatical Error Correction With Overcorrection. IEEE Access, 8, 106264-106272. https://doi.org/10.1109/ACCESS.2020.2998149
  31. Park, C., Kim, K., Yang, Y., Kang, M., & Lim, H. (2020). Neural spelling correction: translating incorrect sentences to correct sentences for multimedia. Multimedia Tools and Applications, 1-18.
  32. Wang, J., Wang, K., Fan, K., Zhang, Y., Lu, J., Ge, X., ... & Zhao, Y. (2020, November). Alibaba's Submission for the WMT 2020 APE Shared Task: Improving Automatic Post-Editing with Pre-trained Conditional Cross-Lingual BERT. In Proceedings of the Fifth Conference on Machine Translation (pp. 789-796).
  33. Lee, W., Shin, J., Jung, B., Lee, J., & Lee, J. H. (2020, November). Noising Scheme for Data Augmentation in Automatic Post-Editing. In Proceedings of the Fifth Conference on Machine Translation (pp. 783-788).