ON FINITE GROUPS WITH THE SAME ORDER TYPE AS SIMPLE GROUPS $\mathrm{F}_{4}(q)$ WITH q EVEN

Ashraf Daneshkhah, Fatemeh Moameri, and Hosein Parvizi Mosaed

Abstract

The main aim of this article is to study quantitative structure of finite simple exceptional groups $\mathrm{F}_{4}\left(2^{n}\right)$ with $n>1$. Here, we prove that the finite simple exceptional groups $\mathrm{F}_{4}\left(2^{n}\right)$, where $2^{4 n}+1$ is a prime number with $n>1$ a power of 2 , can be uniquely determined by their orders and the set of the number of elements with the same order. In conclusion, we give a positive answer to J. G. Thompson's problem for finite simple exceptional groups $\mathrm{F}_{4}\left(2^{n}\right)$.

1. Introduction

For a finite group G, the set nse (G) of the number of elements in G with the same order links to a well-known problem posed by J. G. Thompson (1987) which is related to algebraic number fields [8, Problem 12.37]:

For a finite group G and a natural number n, set $G(n)=\left\{g \in G \mid g^{n}=1\right\}$ and define the type of G to be the function whose value at n is the size of $G(n)$. Is it true that a group is solvable if its type is the same as that of a solvable one?

It immediately turns out that if two groups G and H are of the same type, then $|G|=|H|$ and $\operatorname{nse}(G)=\operatorname{nse}(H)$. Therefore, if a group G has been uniquely determined by its order and nse (G), then Thompson's problem is true for G. One may ask this problem for non-solvable groups, in particular, finite simple groups. In this direction, Shao and et al. [9] studied finite simple groups with at most four prime divisors of their orders and nse. Following this investigation, such problem has been studied for some families of simple groups [1,2] including Suzuki groups $\mathrm{Sz}(q)$ and Small Ree groups $\mathrm{R}(q)$. In this paper, we prove that:

Theorem 1.1. Let G be a group with nse $(G)=\operatorname{nse}\left(\mathrm{F}_{4}\left(2^{n}\right)\right)$ and $|G|=\left|\mathrm{F}_{4}\left(2^{n}\right)\right|$, where $2^{4 n}+1$ is a prime number and $n>1$ is a power of 2 . Then G is isomorphic to $\mathrm{F}_{4}\left(2^{n}\right)$.

[^0]In order to prove Theorem 1.1, we determine the number of elements in $\mathrm{F}_{4}\left(2^{n}\right)$ with the same order in Proposition 3.1. Then we prove that the prime graph of the group G satisfying hypothesis of Theorem 1.1 has at least two components, see Proposition 3.2, and then we show that a section of G is isomorphic to $\mathrm{F}_{4}\left(2^{n}\right)$. Finally, we prove that G is isomorphic to $\mathrm{F}_{4}\left(2^{n}\right)$.

1.1. Definitions and notation

All sets and groups in this paper are finite. The symmetric and alternating groups on n letters are denoted by S_{n} and A_{n}, respectively. A Frobenius group G with kernel K and complement H is a semidirect product $G=K \rtimes H$ such that K is a normal subgroup in G, and $\mathbf{C}_{K}(x)=1$ for every non-identity element x of H. A group G is a 2-Frobenius group if there exists a normal series $1 \unlhd H \unlhd K \unlhd G$ such that G / H and K are Frobenius groups with kernels K / H and H, respectively.

For finite simple groups of Lie type, we adopt the standard notation as in [5], and in particular, we use the notation recorded in Table 1 to denote the finite simple classical groups.

Table 1. Finite simple classical groups

X	d	$\|X\|$	Out (X) \|
$\operatorname{PSL}_{n}(q), n \geqslant 3$	$\operatorname{gcd}(n, q-1)$	$d^{-1} q^{\frac{n(n-1)}{2}} \mathrm{p}_{2}^{n}(q)$	2 ad
$\mathrm{PSL}_{2}(q), q \neq 2,3$	$\operatorname{gcd}(2, q-1)$	$d^{-1} q\left(q^{2}-1\right)$	ad
$\operatorname{PSU}_{n}(q), n \geqslant 3,(n, q) \neq(3,2)$	$\operatorname{gcd}(n, q+1)$	$d^{-1} q^{\frac{n(n-1)}{2}} \mathrm{u}_{2}^{n}(q)$	2 ad
$\mathrm{PSp}_{2 m}(q), m \geqslant 3$	$\operatorname{gcd}(2, q-1)$	$d^{-1} q^{m^{2}} \mathrm{p}_{1}^{m}\left(q^{2}\right)$	ad
$\mathrm{PSp}_{4}(q), q \neq 2$	$\operatorname{gcd}(2, q-1)$	$d^{-1} q^{4}\left(q^{2}-1\right)\left(q^{4}-1\right)$	$2 a$
$\mathrm{P} \Omega_{2 m+1}(q), q$ odd and $m \geqslant 3$	2	$2^{-1} q^{m^{2}} \mathrm{p}_{1}^{m}\left(q^{2}\right)$	$2 a$
$\mathrm{P} \Omega_{2 m}^{+}(q), m \geqslant 5$	$\operatorname{gcd}\left(4, q^{m}-1\right)$	$d^{-1} q^{m(m-1)}\left(q^{m}-1\right) \mathrm{p}_{1}^{m-1}\left(q^{2}\right)$	2 ad
$\mathrm{P} \Omega_{8}^{+}(q)$	$\operatorname{gcd}\left(4, q^{4}-1\right)$	$d^{-1} q^{12}\left(q^{4}-1\right) \prod_{i=1}^{3}\left(q^{2 i}-1\right)$	6 ad
$\mathrm{P} \Omega_{2 m}^{-}(q), m \geqslant 4$	$\operatorname{gcd}\left(4, q^{m}+1\right)$	$d^{-1} q^{m(m-1)}\left(q^{m}+1\right) \mathrm{p}_{1}^{m-1}\left(q^{2}\right)$	2 ad

In this manner, the only repetitions are

$$
\begin{array}{ll}
\operatorname{PSL}_{2}(4) \cong \operatorname{PSL}_{2}(5) \cong \mathrm{A}_{5}, & \operatorname{PSL}_{2}(7) \cong \operatorname{PSL}_{3}(2), \quad \operatorname{PSL}_{2}(9) \cong \mathrm{A}_{6}, \\
\operatorname{PSL}_{4}(2) \cong \mathrm{AS}_{8}, & \operatorname{PS}_{4}(3) \cong \operatorname{PSU}_{4}(2)
\end{array}
$$

For a positive integer n, the set of prime divisors of n is denoted by $\pi(n)$, and if G is a finite group, $\pi(G):=\pi(|G|)$, where $|G|$ is the order of G. We denote the set of elements' orders of G by $\omega(G)$ (known as spectrum of G). Recall that nse (G) is the set of the numbers of elements in G with the same order. In other word, nse (G) consists of the number $\mathrm{m}_{i}(G)$ of elements of order i in G for $i \in \omega(G)$. Also, we denote a Sylow p-subgroup of G by G_{p} and the number of Sylow p-subgroups of G by $\mathrm{n}_{p}(G)$. The prime graph $\Gamma(G)$ of a finite group G is a graph whose vertex set is $\pi(G)$, and two distinct vertices u and v are adjacent if and only if $u v \in \omega(G)$. Assume further that $\Gamma(G)$ has $t(G)$ connected components $\pi_{i}(G)$ for $i=1,2, \ldots, t(G)$. In the case where G is of
even order, we always assume that $2 \in \pi_{1}(G)$, and $\pi_{1}(G)$ is said to be the even component of G. Also we denote by $\omega_{i}(G)$ the subset of $\omega(G)$ consisting of all the numbers such that their prime divisors are in $\pi_{i}(G)$. Further, the largest element in each $\omega_{i}(G)$ is called the order component of G.

2. Preliminaries

In this section, we give some useful results which will be used in the proof of Theorem 1.1.

Lemma 2.1 ([3, Theorem 2]). Let G be a Frobenius group of even order with kernel K and complement H. Then the following statements hold:
(a) K is a nilpotent group;
(b) $|H|$ divides $|K|-1$;
(c) $t(G)=2, \pi(H)$ and $\pi(K)$ are the connected components of $\Gamma(G)$.

Lemma 2.2 ([3, Theorem 2]). Let G be a 2-Frobenius group of even order. Then the following statements hold:
(a) $t(G)=2, \pi_{1}(G)=\pi(H) \cup \pi(G / K)$, and $\pi_{2}(G)=\pi(K / H)$;
(b) G / K and K / H are cyclic groups, $|G / K|$ divides $|\operatorname{Aut}(K / H)|$, $\operatorname{gcd}(|G / K|,|K / H|)=1$ and $|G / K|<|K / H|$;
(c) H is a nilpotent group and G is a solvable group.

Lemma 2.3 ([10, Lemma 3 and Theorem A]). Let G be a finite group with $t(G) \geqslant 2$. Then one of the following statements holds:
(a) G is a Frobenius group;
(b) G is a 2-Frobenius group;
(c) G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that H and G / K are π_{1}-groups, K / H is a non-abelian simple group, H is a nilpotent group, $|G / K|$ divides $|\operatorname{Out}(K / H)|, t(K / H) \geqslant t(G)$, and for any $i \in\{2, \ldots, t(G)\}$, there exists $j \in\{2, \ldots, t(K / H)\}$ such that $\pi_{i}(G)=\pi_{j}(K / H)$.
Lemma 2.4 ([6, Page 4]). Let G be a finite group, and let n be a positive integer dividing $|G|$. If $G(n)=\left\{g \in G \mid g^{n}=1\right\}$, then n divides $|G(n)|$.

In what follows, φ is the Euler totient function. The proof of the following result is straightforward by Lemma 2.4.

Lemma 2.5. Let G be a finite group, and let $i \in \omega(G)$. Then $m_{i}(G)=$ $k \varphi(i)$, where k is the number of cyclic subgroups of order i in G, and i divides $\sum_{j \mid i} m_{j}(G)$. Moreover, if $i>2$, then $m_{i}(G)$ is even.
Lemma 2.6 ([11, Lemma 6]). Let a, m, n be natural numbers. Then
(a) $\operatorname{gcd}\left(a^{m}-1, a^{n}-1\right)=a^{\operatorname{gcd}(m, n)}-1$;
(b) $\operatorname{gcd}\left(a^{m}+1, a^{n}+1\right)= \begin{cases}a^{\operatorname{gcd}(m, n)}+1, & \text { if both } \frac{m}{\operatorname{gcd}(m, n)} \text { and } \frac{n}{\operatorname{gcd}(m, n)} \text { are odd; } \\ \operatorname{gcd}(2, a+1), & \text { otherwise. }\end{cases}$
(c) $\operatorname{gcd}\left(a^{m}-1, a^{n}+1\right)=\left\{\begin{array}{l}a^{\operatorname{gcd}(m, n)}+1, \text { if } \frac{m}{\operatorname{gcd}(m, n)} \text { is even and } \frac{n}{\operatorname{gcd}(m, n)} \text { is odd; } \\ \operatorname{gcd}(2, a+1), \text { otherwise. }\end{array}\right.$

In particular, for every $a \geq 2$ and $m \geq 1$, the inequality $\operatorname{gcd}\left(a^{m}-1, a^{m}+1\right) \leq 2$ holds.

A group G is called a $C_{p p}$-group if the centralizers of its elements of order p in G are p-groups.

Lemma 2.7 ([4]). Let $p=2^{\alpha} 3^{\beta}+1$ be a prime number. Then the finite simple $C_{p p}$-groups are as in Table 2.

TABLE 2. Finite simple $C_{p p}$-groups

p	Group	Conditions
2	$\mathrm{A}_{5}, \mathrm{~A}_{6}$	
2	$\mathrm{PSL}_{2}(q), \mathrm{PSL}_{3}\left(2^{2}\right)$	q Fermat or Mersenne prime, $q=2^{n} \geqslant 8$
2	$\mathrm{Sz}\left(2^{2 n+1}\right)$	$n \geqslant 1$
3	$\mathrm{A}_{5}, \mathrm{~A}_{6}$	
3	$\mathrm{PSL}_{2}(q), \mathrm{PSL}_{2}\left(2^{3}\right), \mathrm{PSL}_{3}\left(2^{2}\right)$	$q=3^{n+1}, q=2 \cdot 3^{n} \pm 1$ prime, $n \geqslant 1$
5	$\mathrm{A}_{5}, \mathrm{~A}_{6}, \mathrm{~A}_{7}$	
5	$\begin{array}{ll} \mathrm{PSL}_{2}(q), & \mathrm{PSL}_{2}\left(7^{2}\right), \\ \mathrm{PSp}_{4}(7) \end{array} \mathrm{PSL}_{3}\left(2^{2}\right), \quad \mathrm{PSU}_{4}(3), \quad \mathrm{PSp}_{4}(3),$	$q=5^{n}, q=2 \cdot 5^{n} \pm 1 \text { prime, } n \geqslant 1$
5	$\mathrm{Sz}\left(2^{3}\right), \mathrm{Sz}\left(2^{5}\right)$	
5	$\mathrm{M}_{11}, \mathrm{M}_{22}$	
7	$\mathrm{A}_{7}, \mathrm{~A}_{8}, \mathrm{~A}_{9}$	
7	$\begin{aligned} & \operatorname{PSL}_{2}(q), \quad \operatorname{PSL}_{2}\left(2^{3}\right), \quad \operatorname{PSL}_{3}\left(2^{2}\right), \quad \operatorname{PSU}_{3}(3), \quad \operatorname{PSU}_{3}(5), \\ & \operatorname{PSU}_{3}(19), \operatorname{PSU}_{4}(3), \operatorname{PSU}_{6}(2), \operatorname{PSp}_{6}(2), \mathrm{P} \Omega_{8}^{+}(2) \end{aligned}$	$q=7^{n}, q=2 \cdot 7^{n}-1$ prime, $n \geqslant 1$
7	$\mathrm{G}_{2}(3), \mathrm{G}_{2}(19), \mathrm{Sz}\left(2^{3}\right)$	
7	$\mathrm{M}_{22}, \mathrm{~J}_{1}, \mathrm{~J}_{2}$, HS	
13	$\mathrm{A}_{13}, \mathrm{~A}_{14}, \mathrm{~A}_{15}$	
13	$\begin{array}{llll} \mathrm{PSL}_{2}(q), & \mathrm{PSL}_{2}\left(3^{3}\right), & \mathrm{PSL}_{2}\left(5^{2}\right), & \mathrm{PSL}_{3}(3), \\ \mathrm{PSU}_{3}\left(2^{2}\right), & \mathrm{PSL}_{3}(3), \\ \mathrm{PS}_{8}^{+}(3) & & \mathrm{PSp}_{4}(5), & \mathrm{PSp}_{6}(3), \\ \mathrm{P}_{7}(3), \end{array}$	$q=13^{n}, q=2 \cdot 13^{n}-1$ prime, $n \geqslant 1$
13	$\mathrm{F}_{4}(2), \mathrm{G}_{2}\left(2^{2}\right), \mathrm{G}_{2}(3), \mathrm{Sz}\left(2^{3}\right),{ }^{3} \mathrm{D}_{4}(2),{ }^{2} \mathrm{E}_{6}(2),{ }^{2} \mathrm{~F}_{4}(2){ }^{\prime}$	
13	Suz, Fi_{22}	
17	$\mathrm{A}_{17}, \mathrm{~A}_{18}, \mathrm{~A}_{19}$	
17	$\mathrm{PSL}_{2}(q), \mathrm{PSL}_{2}\left(2^{4}\right), \mathrm{PSp}_{4}(4), \mathrm{PSp}_{8}(2), \mathrm{P} \Omega_{8}^{-}(2), \mathrm{P} \Omega_{10}^{-}(2)$	$q=17^{n}, q=2 \cdot 17^{n} \pm 1$ prime, $n \geqslant 1$
17	$\mathrm{F}_{4}(2),{ }^{2} \mathrm{E}_{6}(2)$	
17	J_{3}, $\mathrm{He}, \mathrm{Fi}_{23}, \mathrm{Fi}_{24}$	
19	$\mathrm{A}_{19}, \mathrm{~A}_{20}, \mathrm{~A}_{21}$	
19	$\mathrm{PSL}_{2}(q), \mathrm{PSL}_{3}(7), \mathrm{PSU}_{3}\left(2^{3}\right)$	$q=19^{n}, 2 \cdot 19^{n}-1$ prime, $n \geqslant 1$
19	$\mathrm{R}\left(3^{3}\right),{ }^{2} \mathrm{E}_{6}(2)$	
19	$\mathrm{J}_{1}, \mathrm{~J}_{3}, \mathrm{O}^{\prime} \mathrm{N}, \mathrm{Th}, \mathrm{HN}$	
37	$\mathrm{A}_{37}, \mathrm{~A}_{38}, \mathrm{~A}_{39}$	
37	$\mathrm{PSL}_{2}(q), \mathrm{PSU}_{3}(11)$	$q=37^{n}, 2 \cdot 37^{n}-1$ prime, $n \geqslant 1$
37	$\mathrm{R}\left(3^{3}\right),{ }^{2} \mathrm{~F}_{4}\left(2^{3}\right)$	
37	J_{4}, Ly	
73	$\mathrm{A}_{73}, \mathrm{~A}_{74}, \mathrm{~A}_{75}$	
73	$\operatorname{PSL}_{2}(q), \mathrm{PSL}_{3}\left(2^{3}\right), \mathrm{PSU}_{3}\left(3^{2}\right), \mathrm{PSp}_{6}\left(2^{3}\right)$	$q=73^{n}, 2 \cdot 73^{n}-1$ prime, $n \geqslant 1$
73	$\mathrm{G}_{2}\left(2^{3}\right), \mathrm{G}_{2}\left(3^{2}\right), \mathrm{F}_{4}(3), \mathrm{E}_{6}(2), \mathrm{E}_{7}(2),{ }^{3} \mathrm{D}_{4}(3)$	
109	$\mathrm{A}_{109}, \mathrm{~A}_{110}, \mathrm{~A}_{111}$	
109	$\mathrm{PSL}_{2}(q)$	$q=109^{n}, 2 \cdot 109^{n}-1$ prime, $n \geqslant 1$
109	${ }^{2} \mathrm{~F}_{4}\left(2^{3}\right)$	
$2^{m}+1$	$\mathrm{A}_{p}, \mathrm{~A}_{p+1}, \mathrm{~A}_{p+2}$	$m=2^{s}$
$2^{m}+1$	$\mathrm{PSL}_{2}(q)$	$m=2^{s}, q=2^{m}, q=p^{n}, q=2 \cdot p^{n} \pm 1$ $\text { prime, } s \geqslant n \geqslant 1$
$2^{m}+1$	$\mathrm{PSp}_{a}\left(2^{b}\right)$	$\begin{aligned} & m=2^{s}, a=2^{c+1}, b=2^{d}, c \geqslant 1, c+d= \\ & s \end{aligned}$
$2^{m}+1$	$\mathrm{P} \Omega_{2(m+1)}^{-}{ }^{(2)}$	$m=2^{s}, s \geqslant 1$
$2^{m}+1$	$\mathrm{P} \Omega_{a}^{-}\left(2^{b}\right)$	$\begin{aligned} & m=2^{s}, a=2^{c+1}, b=2^{d}, c \geqslant 2, c+d= \\ & s \end{aligned}$
$2^{m}+1$	$\mathrm{F}_{4}\left(2^{e}\right)$	$4 e=m=2^{s}, e \geqslant 1$
other other	$\begin{aligned} & \mathrm{A}_{p}, \mathrm{~A}_{p+1}, \mathrm{~A}_{p+2} \\ & \mathrm{PSL}_{2}(q) \\ & \hline \end{aligned}$	$q=p^{n}, 2 \cdot p^{n}-1$ prime , $n \geqslant 1$

3. Proof of the main result

In this section, we prove Theorem 1.1. Here we set $\mathrm{F}:=\mathrm{F}_{4}(q)$, where $q=2^{n}$, and $p=q^{4}+1$. Let also G be a finite group with nse $(G)=\operatorname{nse}(\mathrm{F})$ and $|G|=|\mathrm{F}|=q^{24}\left(q^{12}-1\right)\left(q^{8}-1\right)\left(q^{6}-1\right)\left(q^{2}-1\right)$. In the following proposition, we determine the set of the number of elements in F with the same order.

Proposition 3.1. Let F be the finite simple exceptional group $\mathrm{F}_{4}\left(2^{n}\right)$, where $p=2^{4 n}+1$ is a prime number and $n>1$ is a power of 2 . Then the following properties hold:
(a) $m_{p}(\mathrm{~F})=(p-1)|\mathrm{F}| /(8 p)$;
(b) p divides $m_{i}(\mathrm{~F})$ for all $i \in \omega(\mathrm{~F}) \backslash\{1, p\}$.

Proof. (a) Suppose that F_{p} is a Sylow p-subgroup of F . Since F_{p} is a cyclic group of order p, Lemma 2.5 implies that $\mathrm{m}_{p}(\mathrm{~F})=\varphi(p) \mathrm{n}_{p}(\mathrm{~F})=(p-1) \mathrm{n}_{p}(\mathrm{~F})$. We now obtain $\mathrm{n}_{p}(\mathrm{~F})$. By [7], p is an isolated vertex of the prime graph $\Gamma(\mathrm{F})$ of F . Then $\left|\mathbf{C}_{\mathrm{F}}\left(\mathrm{F}_{p}\right)\right|=p$ and $\left|\mathbf{N}_{\mathrm{F}}\left(\mathrm{F}_{p}\right)\right|=k p$ for some positive integer k, and so k divides $p-1$ because $\mathbf{N}_{\mathrm{F}}\left(\mathrm{F}_{p}\right) / \mathrm{C}_{\mathrm{F}}\left(\mathrm{F}_{p}\right) \lesssim \operatorname{Aut}\left(\mathrm{F}_{p}\right)$. On the other hand, by the Sylow's theorem, we have that $p \mid(8-k)$. This follows that $k=8$ and $\mathrm{n}_{p}(\mathrm{~F})=|\mathrm{F}| /(8 p)$, as claimed.
(b) Let $i \in \omega(\mathrm{~F}) \backslash\{1, p\}$. As p is an isolated vertex of $\Gamma(\mathrm{F})$, it follows that p does not divide i and $p i \notin \omega(\mathrm{~F})$. Therefore, F_{p} acts fixed point freely by conjugation on the set of elements of order i, and this implies that $\left|\mathrm{F}_{p}\right| \mid \mathrm{m}_{i}(\mathrm{~F})$, as desired.

Proposition 3.2. Let F be the finite simple exceptional group $\mathrm{F}_{4}\left(2^{n}\right)$, where $p=2^{4 n}+1$ is a prime number and $n>1$ is a power of 2 . If G is a finite group with nse $(G)=$ nse (F) and $|G|=|\mathrm{F}|$, then the following properties of group G hold:
(a) $m_{2}(G)=m_{2}(\mathrm{~F})$;
(b) $m_{p}(G)=m_{p}(\mathrm{~F})$;
(c) $n_{p}(G)=n_{p}(\mathrm{~F})$;
(d) p is an isolated vertex of $\Gamma(G)$;
(e) $p \mid m_{i}(G)$ for all $i \in \omega(G) \backslash\{1, p\}$.

Proof. (a) By Lemma 2.5, $\mathrm{m}_{i}(G)$ is odd if and only if $i=1$ or 2 , and so $\mathrm{m}_{2}(G)=\mathrm{m}_{2}(\mathrm{~F})$.
(b) As $p \nmid \mathrm{~m}_{p}(G)$ and nse $(G)=$ nse(F), Proposition 3.1 implies that $\mathrm{m}_{p}(G)=$ $\mathrm{m}_{p}(\mathrm{~F})$.
(c) We know that both G_{p} and F_{p} are cyclic groups of order p. So by part (b), we have that $\mathrm{m}_{p}(G)=\varphi(p) \mathrm{n}_{p}(G)=\varphi(p) \mathrm{n}_{p}(\mathrm{~F})=\mathrm{m}_{p}(\mathrm{~F})$, which gives $\mathrm{n}_{p}(G)=\mathrm{n}_{p}(\mathrm{~F})$.
(d) Assuming to the contrary that p is not an isolated vertex of $\Gamma(G)$. Then there exists $i \in \pi(G)-\{p\}$ such that $i p \in \omega(G)$. We now obtain $\mathrm{m}_{i p}(G)$. We know that $\mathrm{m}_{i p}(G)=\phi(i p) \mathrm{n}_{p}(G) k$, where k is the number of cyclic subgroups of order i in $\mathbf{C}_{G}\left(G_{p}\right)$, and since $\mathrm{n}_{p}(G)=\mathrm{n}_{p}(\mathrm{~F})$, this implies that $\mathrm{m}_{i p}(G)=$
$(i-1)(p-1)|\mathrm{F}| k /(8 p)$. Assume that $\mathrm{m}_{i p}(G)$ is coprime to p, that is to say, $p \nmid \mathrm{~m}_{i p}(G)$. Then, by Proposition 3.1, $\mathrm{m}_{i p}(G)=\mathrm{m}_{p}(G)$, and so $i=2$ and $k=1$. Lemma 2.5 implies that p divides $\mathrm{m}_{2}(G)+\mathrm{m}_{2 p}(G)$, and since $\mathrm{m}_{2}(G)=\mathrm{m}_{2}(\mathrm{~F})$ and $p \mid \mathrm{m}_{2}(\mathrm{~F})$, we deduce that p divides $\mathrm{m}_{2 p}(G)$, which is a contradiction. Therefore, $p \mid \mathrm{m}_{i p}(G)$, and hence p divides $(i-1) k$. Thus the fact that $\mathrm{m}_{i p}(G)<$ $|G|$ yields $p-1 \leq 8$, but this is impossible as $p=2^{4 n}+1$ and $n>1$ is a power of 2. Therefore, p is an isolated vertex of $\Gamma(G)$.
(e) It follows from part (d) that p is an isolated vertex of $\Gamma(G)$. Then $p \nmid i$ and $p i \notin \omega(G)$, and so G_{p} acts fixed point freely by conjugation on the set of elements of order i. Thus $\left|G_{p}\right|$ divides $\mathrm{m}_{i}(G)$, and hence p divides $\mathrm{m}_{i}(G)$ as claimed.

Proposition 3.3. Let F be the finite simple exceptional group $\mathrm{F}_{4}\left(2^{n}\right)$, where $p=2^{4 n}+1$ is a prime number and $n>1$ is a power of 2 . If G is a finite group with nse $(G)=n s e(\mathrm{~F})$ and $|G|=|\mathrm{F}|$, then G is neither a Frobenius group, nor a 2-Frobenius group.

Proof. Suppose to the contrary that G is a Frobenius group with kernel K and complement H. Then by Lemma 2.1, $t(G)=2, \pi(H)$ and $\pi(K)$ are the connected components of $\Gamma(G)$ and $|H|$ divides $|K|-1$. Now by Proposition $3.2, p$ is an isolated vertex of $\Gamma(G)$, and hence either $|H|=p$ and $|K|=|G| / p$, or $|H|=|G| / p$ and $|K|=p$, with $p=2^{4 n}+1$ prime. The latter case can be ruled out as $|H|$ must divide $|K|-1$. Therefore, $|H|=p$ and $|K|=|G| / p$, and hence $p=2^{4 n}+1$ divides 7 , which is impossible.

Suppose to the contrary that G is a 2 -Frobenius group. Then G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that G / H and K are Frobenius groups with kernels K / H and H, respectively. Since p is an isolated vertex of $\Gamma(G)$, we conclude that $|K / H|=p$. Thus Lemma 2.2 implies that $|G / K|$ divides $|\operatorname{Aut}(K / H)|=p-1$. Therefore, $2^{n}+1$ divides $|H|$. As H is a nilpotent group, $H_{t} \rtimes L$ is a Frobenius group with kernel H_{t} and complement L, where L is the complement of Frobenius group K and $t \in \pi\left(2^{n}+1\right)$. Therefore $p=2^{4 n}+1$ divides $t-1$, which is impossible.

Proof of Theorem 1.1. Let F be the finite simple exceptional group $\mathrm{F}_{4}\left(2^{n}\right)$, where $p=2^{4 n}+1$ is a prime number and $n>1$ is a power of 2 . Let also G be a finite group with nse $(G)=$ nse (F) and $|G|=|\mathrm{F}|$. By Propositions 3.2 and 3.3, the prime graph of G has at least two connected components and G is neither a Frobenius group nor a 2 -Frobenius group. Thus Lemma 2.3 implies that G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that H and G / K are π_{1}-groups, K / H is a non-abelian simple group, H is a nilpotent group and $|G / K|$ divides \mid Out $(K / H) \mid$. Moreover, any odd order component of G is also an odd order component of K / H.

We first prove that K / H is isomorphic to F . Since p is an odd order component of G, Lemma 2.3 follows immediately that p is an odd order component of K / H. Thus K / H is a simple $C_{p p}$-group, and hence K / H is isomorphic to one
of the groups recorded in Table 2. In what follows, we discuss the alternating and the classical cases and other cases can be treated in a similar manner.
(1) K / H is not isomorphic to alternating groups.

If $K / H \cong \mathrm{~A}_{n}$, then according to Table $2, n \in\{p, p+1, p+2\}$. We know that $|K / H|\left||G|\right.$, so $q^{4}-2$ divides $q^{24}\left(q^{12}-1\right)\left(q^{8}-1\right)\left(q^{6}-1\right)\left(q^{2}-1\right)$, but since $q=2^{n}$ with $n>1$ power of 2 , it is impossible by Lemma 2.6 .
(2) K / H is not isomorphic to projective special linear groups.

If K / H is isomorphic to $\mathrm{PSL}_{2}\left(q^{\prime}\right)$, then by Table 2, we have the following three cases to consider:
(2.1) $q^{\prime}=q^{4}$. Since $|G / K|$ divides $|\operatorname{Out}(K / H)|$, and by Table 1, $|\operatorname{Out}(K / H)|$ $=4 n$ and n is a power of 2 , we deduce that $|G / K|$ is a divisor of $4 n$ and $2\left(q^{12}-1\right)\left(q^{6}-1\right)\left(q^{2}-1\right)$ divides $|H|$. Thus for every $i \in \pi\left(q^{4}-q^{2}+1\right)$, we have that $H_{i}=G_{i}$. This implies that $\mathrm{m}_{i}(H)=\mathrm{m}_{i}(G)$. On the other hand, H has only one Sylow i-subgroup since H is nilpotent. Thus $\mathrm{m}_{i}(H) \leqslant q^{4}-q^{2}+1$, which is impossible because $\mathrm{m}_{i}(H)=\mathrm{m}_{i}(G)$ and $p \mid \mathrm{m}_{i}(G)$.
(2.2) $q^{\prime}=p^{k}$. Then $p+1$ divides $|K / H|$, but $p+1$ does not divide $|G|$, which is a contradiction.
(2.3) $q^{\prime}=2 \cdot p^{k} \pm 1$. Then $k=1$ because p^{2} divides $|K / H|$ and $p^{2} \nmid|G|$. So $|K / H|=2 p(2 p \pm 1)(2 p \pm 2)$, which is a contradiction as $2 p \pm 1 \nmid|G|$.
(3) K / H is not isomorphic to projective symplectic groups.

By Table $2, K / H \cong \operatorname{PSp}_{a}\left(2^{b}\right)$, where $a=2^{c+1}$ and $b=2^{d}$ with $c \geqslant 1$, $c+d=s$. If $c>2$, then $2^{10 b}-1| | K / H \mid$ but $2^{10 b}-1$ does not divide $|G|$, which is a contradiction. Thus $c=1$ or 2 . Since $|G / K|$ divides $|\operatorname{Out}(K / H)|$, $|\operatorname{Out}(K / H)| \mid 2 b$ and b is a power of 2 , we deduce that $|G / K|$ divides $2 b$ and $q^{4}-q^{2}+1| | H \mid$. Thus for every $i \in \pi\left(q^{4}-q^{2}+1\right)$, we have that $H_{i}=G_{i}$. This implies that $\mathrm{m}_{i}(H)=\mathrm{m}_{i}(G)$. Note that H is nilpotent. Thus H has only one Sylow i-subgroup, and so $\mathrm{m}_{i}(H) \leqslant q^{4}-q^{2}+1$. This is impossible as $\mathrm{m}_{i}(H)=\mathrm{m}_{i}(G)$ and $p \mid \mathrm{m}_{i}(G)$.
(4) K / H is not isomorphic to simple groups of orthogonal type.

If $K / H \cong \mathrm{P} \Omega_{2(m+1)}^{-}(2)$, then $2 q^{4}+1| | K / H \mid$, which is a contradiction as $2 q^{4}+1$ is not a divisor of $|G|$. If $K / H \cong \mathrm{P} \Omega_{a}^{-}\left(2^{b}\right)$, where $a=2^{c+1} \geqslant 8$ and $b=2^{d}$ with $c+d=s$, then since $\left(q^{4}\right)^{2^{c}-1}| | K / H \mid$, it follows that $2^{c}-1 \leqslant 6$, and hence $c=2$. Since also $|G / K|$ divides $|\operatorname{Out}(K / H)|=2 b$ and b is a power of 2 , we deduce that $|G / K| \mid 2 b$ and $q^{4}-q^{2}+1| | H \mid$. Thus for every $i \in \pi\left(q^{4}-q^{2}+1\right)$, we have $H_{i}=G_{i}$. This implies that $\mathrm{m}_{i}(H)=\mathrm{m}_{i}(G)$, but H has only one Sylow i-subgroup. Thus $\mathrm{m}_{i}(H) \leqslant q^{4}-q^{2}+1$, which is impossible as $\mathrm{m}_{i}(H)=\mathrm{m}_{i}(G)$ and $p \mid \mathrm{m}_{i}(G)$.

As noted above, by a similar argument, we conclude that K / H is isomorphic to $\mathrm{F}_{4}\left(2^{e}\right)$ with $4 e=2^{s}$. Thus $q=2^{e}$, and hence $|K / H|=|G|$. Therefore, $H=1$, and consequently, $G=K=\mathrm{F}_{4}(q)$.

References

[1] S. H. Alavi, A. Daneshkhah, and H. Parvizi Mosaed, On quantitative structure of small Ree groups, Comm. Algebra 45 (2017), no. 9, 4099-4108. https://doi.org/10.1080/ 00927872.2016.1260730
[2] , Finite groups of the same type as Suzuki groups, Int. J. Group Theory 8 (2019), no. 1, 35-42. https://doi.org/10.22108/ijgt.2017.21556
[3] G. Chen, On structure of Frobenuis group and 2-Frobenuis group, J. Southwest China Normal Univ. 20 (2005), no. 5, 485-487.
[4] Z. M. Chen and W. J. Shi, On simple $C_{p p}$ groups, J. Southwest China Teachers Univ. 18 (1993), no. 3, 249-256.
[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.
[6] G. Frobenius, Verallgemeinerung des sylowschen satze, Berliner Sitz, 1895.
[7] A. S. Kondrat'ev, On prime graph components of finite simple groups, Mat. Sb. 180 (1989), no. 6, 787-797.
[8] V. D. Mazurov and E. I. Khukhro, The Kourovka notebook, Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 2006.
[9] C. Shao, W. Shi, and Q. Jiang, Characterization of simple K_{4}-groups, Front. Math. China 3 (2008), no. 3, 355-370. https://doi.org/10.1007/s11464-008-0025-x
[10] J. S. Williams, Prime graph components of finite groups, J. Algebra 69 (1981), no. 2, 487-513. https://doi.org/10.1016/0021-8693(81) 90218-0
[11] A. V. Zavarnitsine, Recognition of the simple groups $L_{3}(q)$ by element orders, J. Group Theory 7 (2004), no. 1, 81-97. https://doi.org/10.1515/jgth. 2003.044

Ashraf Daneshkhah
Department of Mathematics
Faculty of Science
Bu-Ali Sina University
Hamedan, Iran
Email address: adanesh@basu.ac.ir
Fatemeh Moameri
Department of Mathematics
Faculty of Science
Bu-Ali Sina University
Hamedan, Iran
Email address: f.moameri@basu.ac.ir
Hosein Parvizi Mosaed
Alvand Institute of Higher Education
Hamedan, Iran
Email address: h.parvizi.mosaed@gmail.com

[^0]: Received September 21, 2020; Accepted January 14, 2021.
 2010 Mathematics Subject Classification. Primary 20D60; Secondary 20D06.
 Key words and phrases. Exceptional groups of Lie type, prime graph, the set of the number of elements with the same order.

