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ON FINITE GROUPS WITH THE SAME ORDER TYPE AS

SIMPLE GROUPS F4(q) WITH q EVEN

Ashraf Daneshkhah, Fatemeh Moameri, and Hosein Parvizi Mosaed

Abstract. The main aim of this article is to study quantitative structure

of finite simple exceptional groups F4(2n) with n > 1. Here, we prove
that the finite simple exceptional groups F4(2n), where 24n +1 is a prime

number with n > 1 a power of 2, can be uniquely determined by their
orders and the set of the number of elements with the same order. In

conclusion, we give a positive answer to J. G. Thompson’s problem for

finite simple exceptional groups F4(2n).

1. Introduction

For a finite group G, the set nse(G) of the number of elements in G with
the same order links to a well-known problem posed by J. G. Thompson (1987)
which is related to algebraic number fields [8, Problem 12.37]:

For a finite group G and a natural number n, set G(n) = {g ∈ G | gn = 1}
and define the type of G to be the function whose value at n is the size of G(n).
Is it true that a group is solvable if its type is the same as that of a solvable
one?

It immediately turns out that if two groups G and H are of the same type,
then |G| = |H| and nse(G) = nse(H). Therefore, if a group G has been uniquely
determined by its order and nse(G), then Thompson’s problem is true for G.
One may ask this problem for non-solvable groups, in particular, finite simple
groups. In this direction, Shao and et al. [9] studied finite simple groups with at
most four prime divisors of their orders and nse. Following this investigation,
such problem has been studied for some families of simple groups [1,2] including
Suzuki groups Sz(q) and Small Ree groups R(q). In this paper, we prove that:

Theorem 1.1. Let G be a group with nse(G) = nse(F4(2n)) and |G| = |F4(2n)|,
where 24n + 1 is a prime number and n > 1 is a power of 2. Then G is
isomorphic to F4(2n).
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In order to prove Theorem 1.1, we determine the number of elements in
F4(2n) with the same order in Proposition 3.1. Then we prove that the prime
graph of the group G satisfying hypothesis of Theorem 1.1 has at least two
components, see Proposition 3.2, and then we show that a section of G is
isomorphic to F4(2n). Finally, we prove that G is isomorphic to F4(2n).

1.1. Definitions and notation

All sets and groups in this paper are finite. The symmetric and alternating
groups on n letters are denoted by Sn and An, respectively. A Frobenius group
G with kernel K and complement H is a semidirect product G = K oH such
that K is a normal subgroup in G, and CK(x) = 1 for every non-identity
element x of H. A group G is a 2-Frobenius group if there exists a normal
series 1EH EK EG such that G/H and K are Frobenius groups with kernels
K/H and H, respectively.

For finite simple groups of Lie type, we adopt the standard notation as in
[5], and in particular, we use the notation recorded in Table 1 to denote the
finite simple classical groups.

Table 1. Finite simple classical groups

X d |X| |Out(X)|

PSLn(q), n > 3 gcd(n, q − 1) d−1q
n(n−1)

2 pn
2 (q) 2ad

PSL2(q), q 6= 2, 3 gcd(2, q − 1) d−1q(q2 − 1) ad

PSUn(q), n > 3, (n, q) 6= (3, 2) gcd(n, q + 1) d−1q
n(n−1)

2 un
2 (q) 2ad

PSp2m(q), m > 3 gcd(2, q − 1) d−1qm
2
pm
1 (q2) ad

PSp4(q), q 6= 2 gcd(2, q − 1) d−1q4(q2 − 1)(q4 − 1) 2a

PΩ2m+1(q), q odd and m > 3 2 2−1qm
2
pm
1 (q2) 2a

PΩ+
2m(q), m > 5 gcd(4, qm − 1) d−1qm(m−1)(qm − 1)pm−1

1 (q2) 2ad

PΩ+
8 (q) gcd(4, q4 − 1) d−1q12(q4 − 1)

∏3
i=1(q2i − 1) 6ad

PΩ−2m(q), m > 4 gcd(4, qm + 1) d−1qm(m−1)(qm + 1)pm−1
1 (q2) 2ad

Note: pn
t (q) =

∏n
i=t(q

i − 1) and un
t (q) =

∏n
i=t(q

i − (−1)i), where q = pa with p prime.

In this manner, the only repetitions are

PSL2(4) ∼= PSL2(5) ∼= A5, PSL2(7) ∼= PSL3(2), PSL2(9) ∼= A6,

PSL4(2) ∼= A8, PSp4(3) ∼= PSU4(2).

For a positive integer n, the set of prime divisors of n is denoted by π(n),
and if G is a finite group, π(G) := π(|G|), where |G| is the order of G. We
denote the set of elements’ orders of G by ω(G) (known as spectrum of G).
Recall that nse(G) is the set of the numbers of elements in G with the same
order. In other word, nse(G) consists of the number mi(G) of elements of order
i in G for i ∈ ω(G). Also, we denote a Sylow p-subgroup of G by Gp and the
number of Sylow p-subgroups of G by np(G). The prime graph Γ(G) of a finite
group G is a graph whose vertex set is π(G), and two distinct vertices u and
v are adjacent if and only if uv ∈ ω(G). Assume further that Γ(G) has t(G)
connected components πi(G) for i = 1, 2, . . . , t(G). In the case where G is of
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even order, we always assume that 2 ∈ π1(G), and π1(G) is said to be the even
component of G. Also we denote by ωi(G) the subset of ω(G) consisting of all
the numbers such that their prime divisors are in πi(G). Further, the largest
element in each ωi(G) is called the order component of G.

2. Preliminaries

In this section, we give some useful results which will be used in the proof
of Theorem 1.1.

Lemma 2.1 ([3, Theorem 2]). Let G be a Frobenius group of even order with
kernel K and complement H. Then the following statements hold:

(a) K is a nilpotent group;
(b) |H| divides |K| − 1;
(c) t(G) = 2, π(H) and π(K) are the connected components of Γ(G).

Lemma 2.2 ([3, Theorem 2]). Let G be a 2-Frobenius group of even order.
Then the following statements hold:

(a) t(G) = 2, π1(G) = π(H) ∪ π(G/K), and π2(G) = π(K/H);
(b) G/K and K/H are cyclic groups, |G/K| divides |Aut(K/H)|,

gcd(|G/K|, |K/H|) = 1 and |G/K| < |K/H|;
(c) H is a nilpotent group and G is a solvable group.

Lemma 2.3 ([10, Lemma 3 and Theorem A]). Let G be a finite group with
t(G) > 2. Then one of the following statements holds:

(a) G is a Frobenius group;
(b) G is a 2-Frobenius group;
(c) G has a normal series 1EHEKEG such that H and G/K are π1-groups,

K/H is a non-abelian simple group, H is a nilpotent group, |G/K| di-
vides |Out(K/H)|, t(K/H) > t(G), and for any i ∈ {2, . . . , t(G)}, there
exists j ∈ {2, . . . , t(K/H)} such that πi(G) = πj(K/H).

Lemma 2.4 ([6, Page 4]). Let G be a finite group, and let n be a positive
integer dividing |G|. If G(n) = {g ∈ G | gn = 1}, then n divides |G(n)|.

In what follows, ϕ is the Euler totient function. The proof of the following
result is straightforward by Lemma 2.4.

Lemma 2.5. Let G be a finite group, and let i ∈ ω(G). Then mi(G) =
kϕ(i), where k is the number of cyclic subgroups of order i in G, and i divides∑
j|imj(G). Moreover, if i > 2, then mi(G) is even.

Lemma 2.6 ([11, Lemma 6]). Let a,m, n be natural numbers. Then

(a) gcd(am − 1, an − 1) = agcd(m,n) − 1;

(b) gcd(am+1, an+1)=

{
agcd(m,n)+1, if both m

gcd(m,n) and n
gcd(m,n) are odd;

gcd(2, a+ 1), otherwise.



1034 A. DANESHKHAH, F. MOAMERI, AND H. PARVIZI MOSAED

(c) gcd(am−1, an+1)=

{
agcd(m,n)+1, if m

gcd(m,n) is even and n
gcd(m,n) is odd;

gcd(2, a+ 1), otherwise.

In particular, for every a ≥ 2 and m ≥ 1, the inequality gcd(am−1, am+1) ≤ 2
holds.

A group G is called a Cpp-group if the centralizers of its elements of order p
in G are p-groups.

Lemma 2.7 ([4]). Let p = 2α3β +1 be a prime number. Then the finite simple
Cpp-groups are as in Table 2.

Table 2. Finite simple Cpp-groups
p Group Conditions
2 A5, A6

2 PSL2(q), PSL3(22) q Fermat or Mersenne prime, q = 2n > 8

2 Sz(22n+1) n > 1
3 A5, A6

3 PSL2(q), PSL2(23), PSL3(22) q = 3n+1, q = 2 · 3n ± 1 prime, n > 1
5 A5, A6, A7

5 PSL2(q), PSL2(72), PSL3(22), PSU4(3), PSp4(3),
PSp4(7)

q = 5n, q = 2 · 5n ± 1 prime, n > 1

5 Sz(23), Sz(25)
5 M11, M22

7 A7, A8, A9

7 PSL2(q), PSL2(23), PSL3(22), PSU3(3), PSU3(5),

PSU3(19), PSU4(3), PSU6(2), PSp6(2), PΩ+
8 (2)

q = 7n, q = 2 · 7n − 1 prime, n > 1

7 G2(3), G2(19), Sz(23)
7 M22, J1, J2, HS
13 A13, A14, A15

13 PSL2(q), PSL2(33), PSL2(52), PSL3(3), PSL4(3),

PSU3(22), PSU3(23), PSp4(5), PSp6(3), PΩ7(3),

PΩ+
8 (3)

q = 13n, q = 2 · 13n − 1 prime, n > 1

13 F4(2), G2(22), G2(3), Sz(23), 3D4(2), 2E6(2), 2F4(2)
′

13 Suz, Fi22
17 A17, A18, A19

17 PSL2(q), PSL2(24), PSp4(4), PSp8(2), PΩ−8 (2), PΩ−10(2) q = 17n, q = 2 · 17n ± 1 prime, n > 1
17 F4(2), 2E6(2)
17 J3, He, Fi23, Fi24
19 A19, A20, A21

19 PSL2(q), PSL3(7), PSU3(23) q = 19n, 2 · 19n − 1 prime, n > 1
19 R(33), 2E6(2)
19 J1, J3, O′N, Th, HN
37 A37, A38, A39

37 PSL2(q), PSU3(11) q = 37n, 2 · 37n − 1 prime, n > 1
37 R(33), 2F4(23)
37 J4, Ly
73 A73, A74, A75

73 PSL2(q), PSL3(23), PSU3(32), PSp6(23) q = 73n, 2 · 73n − 1 prime, n > 1
73 G2(23), G2(32), F4(3), E6(2), E7(2), 3D4(3)
109 A109, A110, A111

109 PSL2(q) q = 109n, 2 · 109n − 1 prime, n > 1
109 2F4(23)
2m + 1 Ap, Ap+1, Ap+2 m = 2s

2m + 1 PSL2(q) m = 2s, q = 2m, q = pn, q = 2 · pn ± 1
prime, s > n > 1

2m + 1 PSpa(2b) m = 2s, a = 2c+1, b = 2d, c > 1, c+ d =
s

2m + 1 PΩ−
2(m+1)

(2) m = 2s, s > 1

2m + 1 PΩ−a (2b) m = 2s, a = 2c+1, b = 2d, c > 2, c+ d =
s

2m + 1 F4(2e) 4e = m = 2s, e > 1
other Ap, Ap+1, Ap+2

other PSL2(q) q = pn, 2 · pn − 1 prime , n > 1
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3. Proof of the main result

In this section, we prove Theorem 1.1. Here we set F := F4(q), where
q = 2n, and p = q4 + 1. Let also G be a finite group with nse(G) = nse(F) and
|G| = |F| = q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1). In the following proposition,
we determine the set of the number of elements in F with the same order.

Proposition 3.1. Let F be the finite simple exceptional group F4(2n), where
p = 24n + 1 is a prime number and n > 1 is a power of 2. Then the following
properties hold:

(a) mp(F) = (p− 1)|F|/(8p);
(b) p divides mi(F) for all i ∈ ω(F) \ {1, p}.

Proof. (a) Suppose that Fp is a Sylow p-subgroup of F. Since Fp is a cyclic
group of order p, Lemma 2.5 implies that mp(F) = ϕ(p)np(F) = (p − 1)np(F).
We now obtain np(F). By [7], p is an isolated vertex of the prime graph Γ(F)
of F. Then |CF(Fp)| = p and |NF(Fp)| = kp for some positive integer k, and
so k divides p− 1 because NF(Fp)/CF(Fp) . Aut(Fp). On the other hand, by
the Sylow’s theorem, we have that p | (8 − k). This follows that k = 8 and
np(F) = |F|/(8p), as claimed.

(b) Let i ∈ ω(F) \ {1, p}. As p is an isolated vertex of Γ(F), it follows that
p does not divide i and pi /∈ ω(F). Therefore, Fp acts fixed point freely by
conjugation on the set of elements of order i, and this implies that |Fp| | mi(F),
as desired. �

Proposition 3.2. Let F be the finite simple exceptional group F4(2n), where
p = 24n+ 1 is a prime number and n > 1 is a power of 2. If G is a finite group
with nse(G) = nse(F) and |G| = |F|, then the following properties of group G
hold:

(a) m2(G) = m2(F);
(b) mp(G) = mp(F);
(c) np(G) = np(F);
(d) p is an isolated vertex of Γ(G);
(e) p | mi(G) for all i ∈ ω(G) \ {1, p}.

Proof. (a) By Lemma 2.5, mi(G) is odd if and only if i = 1 or 2, and so
m2(G) = m2(F).

(b) As p - mp(G) and nse(G) = nse(F), Proposition 3.1 implies that mp(G) =
mp(F).

(c) We know that both Gp and Fp are cyclic groups of order p. So by part
(b), we have that mp(G) = ϕ(p)np(G) = ϕ(p)np(F) = mp(F), which gives
np(G) = np(F).

(d) Assuming to the contrary that p is not an isolated vertex of Γ(G). Then
there exists i ∈ π(G) − {p} such that ip ∈ ω(G). We now obtain mip(G). We
know that mip(G) = φ(ip)np(G)k, where k is the number of cyclic subgroups
of order i in CG(Gp), and since np(G) = np(F), this implies that mip(G) =
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(i − 1)(p − 1)|F|k/(8p). Assume that mip(G) is coprime to p, that is to say,
p - mip(G). Then, by Proposition 3.1, mip(G) = mp(G), and so i = 2 and k = 1.
Lemma 2.5 implies that p divides m2(G) + m2p(G), and since m2(G) = m2(F)
and p | m2(F), we deduce that p divides m2p(G), which is a contradiction.
Therefore, p | mip(G), and hence p divides (i−1)k. Thus the fact that mip(G) <
|G| yields p− 1 ≤ 8, but this is impossible as p = 24n + 1 and n > 1 is a power
of 2. Therefore, p is an isolated vertex of Γ(G).

(e) It follows from part (d) that p is an isolated vertex of Γ(G). Then p - i
and pi /∈ ω(G), and so Gp acts fixed point freely by conjugation on the set of
elements of order i. Thus |Gp| divides mi(G), and hence p divides mi(G) as
claimed. �

Proposition 3.3. Let F be the finite simple exceptional group F4(2n), where
p = 24n+ 1 is a prime number and n > 1 is a power of 2. If G is a finite group
with nse(G) = nse(F) and |G| = |F|, then G is neither a Frobenius group, nor
a 2-Frobenius group.

Proof. Suppose to the contrary that G is a Frobenius group with kernel K
and complement H. Then by Lemma 2.1, t(G) = 2, π(H) and π(K) are the
connected components of Γ(G) and |H| divides |K| − 1. Now by Proposition
3.2, p is an isolated vertex of Γ(G), and hence either |H| = p and |K| = |G|/p,
or |H| = |G|/p and |K| = p, with p = 24n + 1 prime. The latter case can be
ruled out as |H| must divide |K| − 1. Therefore, |H| = p and |K| = |G|/p, and
hence p = 24n + 1 divides 7, which is impossible.

Suppose to the contrary that G is a 2-Frobenius group. Then G has a
normal series 1 E H E K E G such that G/H and K are Frobenius groups
with kernels K/H and H, respectively. Since p is an isolated vertex of Γ(G),
we conclude that |K/H| = p. Thus Lemma 2.2 implies that |G/K| divides
|Aut(K/H)| = p− 1. Therefore, 2n + 1 divides |H|. As H is a nilpotent group,
HtoL is a Frobenius group with kernel Ht and complement L, where L is the
complement of Frobenius group K and t ∈ π(2n + 1). Therefore p = 24n + 1
divides t− 1, which is impossible. �

Proof of Theorem 1.1. Let F be the finite simple exceptional group F4(2n),
where p = 24n + 1 is a prime number and n > 1 is a power of 2. Let also G
be a finite group with nse(G) = nse(F) and |G| = |F|. By Propositions 3.2
and 3.3, the prime graph of G has at least two connected components and G is
neither a Frobenius group nor a 2-Frobenius group. Thus Lemma 2.3 implies
that G has a normal series 1EHEKEG such that H and G/K are π1-groups,
K/H is a non-abelian simple group, H is a nilpotent group and |G/K| divides
|Out(K/H)|. Moreover, any odd order component of G is also an odd order
component of K/H.

We first prove that K/H is isomorphic to F. Since p is an odd order compo-
nent of G, Lemma 2.3 follows immediately that p is an odd order component of
K/H. Thus K/H is a simple Cpp-group, and hence K/H is isomorphic to one
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of the groups recorded in Table 2. In what follows, we discuss the alternating
and the classical cases and other cases can be treated in a similar manner.

(1) K/H is not isomorphic to alternating groups.
If K/H ∼= An, then according to Table 2, n ∈ {p, p + 1, p + 2}. We know

that |K/H| | |G|, so q4−2 divides q24(q12−1)(q8−1)(q6−1)(q2−1), but since
q = 2n with n > 1 power of 2, it is impossible by Lemma 2.6.

(2) K/H is not isomorphic to projective special linear groups.
If K/H is isomorphic to PSL2(q′), then by Table 2, we have the following

three cases to consider:
(2.1) q′ = q4. Since |G/K| divides |Out(K/H)|, and by Table 1, |Out(K/H)|

= 4n and n is a power of 2, we deduce that |G/K| is a divisor of 4n and
2(q12 − 1)(q6 − 1)(q2 − 1) divides |H|. Thus for every i ∈ π(q4 − q2 + 1), we
have that Hi = Gi. This implies that mi(H) = mi(G). On the other hand, H
has only one Sylow i-subgroup since H is nilpotent. Thus mi(H) 6 q4− q2 + 1,
which is impossible because mi(H) = mi(G) and p | mi(G).

(2.2) q′ = pk. Then p+1 divides |K/H|, but p+1 does not divide |G|, which
is a contradiction.

(2.3) q′ = 2 · pk ± 1. Then k = 1 because p2 divides |K/H| and p2 - |G|. So
|K/H| = 2p(2p± 1)(2p± 2), which is a contradiction as 2p± 1 - |G|.

(3) K/H is not isomorphic to projective symplectic groups.
By Table 2, K/H ∼= PSpa(2b), where a = 2c+1 and b = 2d with c > 1,

c + d = s. If c > 2, then 210b − 1 | |K/H| but 210b − 1 does not divide |G|,
which is a contradiction. Thus c = 1 or 2. Since |G/K| divides |Out(K/H)|,
|Out(K/H)| | 2b and b is a power of 2, we deduce that |G/K| divides 2b and
q4 − q2 + 1 | |H|. Thus for every i ∈ π(q4 − q2 + 1), we have that Hi = Gi.
This implies that mi(H) = mi(G). Note that H is nilpotent. Thus H has
only one Sylow i-subgroup, and so mi(H) 6 q4 − q2 + 1. This is impossible as
mi(H) = mi(G) and p | mi(G).

(4) K/H is not isomorphic to simple groups of orthogonal type.
If K/H ∼= PΩ−2(m+1)(2), then 2q4 + 1 | |K/H|, which is a contradiction as

2q4 + 1 is not a divisor of |G|. If K/H ∼= PΩ−a (2b), where a = 2c+1 > 8 and
b = 2d with c+d = s, then since (q4)2c−1 | |K/H|, it follows that 2c−1 6 6, and
hence c = 2. Since also |G/K| divides |Out(K/H)| = 2b and b is a power of 2,
we deduce that |G/K| | 2b and q4−q2+1 | |H|. Thus for every i ∈ π(q4−q2+1),
we have Hi = Gi. This implies that mi(H) = mi(G), but H has only one Sylow
i-subgroup. Thus mi(H) 6 q4 − q2 + 1, which is impossible as mi(H) = mi(G)
and p | mi(G).

As noted above, by a similar argument, we conclude that K/H is isomorphic
to F4(2e) with 4e = 2s. Thus q = 2e, and hence |K/H| = |G|. Therefore,
H = 1, and consequently, G = K = F4(q). �
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