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DOMINATION PARAMETERS IN MYCIELSKI GRAPHS

Young Soo Kwon, Jaeun Lee, and Moo Young Sohn

Abstract. In this paper, we consider several domination parameters like

perfect domination number, locating-domination number, open-locating-

domination number, etc. in the Mycielski graph M(G) of a graph G.
We found upper bounds for locating-domination number of M(G) and

computational formulae for perfect locating-domination number and open
locating-domination number of M(G). We also showed that the perfect

domination number of M(G) is at least that of G plus 1 and that for

each positive integer n, there exists a graph Gn such that the perfect
domination number of M(Gn) is equal to that of Gn plus n.

1. Introduction

Let G be a finite connected simple graph with vertex set V (G) and edge
set E(G). The neighborhood of a vertex v ∈ V (G), denoted by NG(v), is the
set of vertices adjacent to v in G. The cardinality of the neighborhood of a
vertex v is denoted by degG(v). The closed neighborhood of a vertex v in a
graph G is denoted by NG[v] = NG(v) ∪ {v}. For a subset S of V (G), we set
NG(S) =

⋃
v∈S NG(v) and NG[S] = NG(S) ∪ S. The subgraph induced by a

subset S of V (G) is denoted by G[S]. We use |X| for the cardinality of a set
X. For other terminology not given here, we refer to [4].

A dominating set, abbreviated as DS, of G is a subset S of V (G) satisfying
N [S] = V (G). The domination number of G, denoted by γ(G), is the minimum
cardinality of a DS for G. A perfect dominating set, abbreviated as PDS, of G
is a subset S of V (G) such that each vertex not in S is adjacent to a unique
vertex in S. The perfect domination number of G, denoted by γp(G), is the
minimum cardinality of a PDS for G. A locating-dominating set, abbreviated
as LDS, of G is a DS S with the property that for any distinct vertices u and
v in V − S, N(u) ∩ S 6= N(v) ∩ S. The locating-domination number, denoted
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by γL(G), of G is the minimum cardinality of a LDS for G. A perfect locating-
dominating set, abbreviated as PLDS, of G is a PDS as well as a LDS of G. The
perfect locating-domination number, denoted by γLp (G), of G is the minimum
cardinality of a PLDS for G. An open locating-dominating set, abbreviated
as OLDS, of G is a subset S of V (G) such that for each vertex v ∈ V (G),
N(v) ∩ S is not empty and for any distinct vertices u and v in V (G), we have
N(u) ∩ S 6= N(v) ∩ S. When an OLDS exists, the open locating-domination
number, denoted by γOL(G), of G is the minimum cardinality of an OLDS for
G. Note that a dominating set, a perfect dominating set, a locating-dominating
set and a perfect locating-dominating set always exist, but an open locating-
dominating set does not always exist.

For a given graph G with V (G) = {v1, v2, . . . , vn}, the Mycielski graph M(G)
of G is defined as follows:

V (M(G)) = {v1, v2, . . . , vn} ∪ {u1, u2, . . . , un} ∪ {w},
E(M(G)) = {vivj , viuj , uivj | vivj ∈ E(G)} ∪ {uiw | 1 ≤ i ≤ n}.

We call G the base graph of M(G). Note that the Mycielski graph M(G) of G
contains G itself as an isomorphic subgraph, together with n+1 additional ver-
tices. For our convenience, let V = {v1, v2, . . . , vn} and U = {u1, u2, . . . , un}.

The Mycielski graph of a graph G was introduced by J. Mycielski for the pur-
pose of constructing triangle-free graphs with arbitrary large chromatic num-
ber [9]. In recent years, there have been results on Mycielski graph related to
several coloring problems [1, 3, 5, 7, 10] and related to domination parameters
[2,6,8]. In [2], Chen and Xing computed several domination parameters for the
iterated Mycielski graph of a graph and the domination number of generalized
Mycielski graph of a graph was computed by Lin et al. in [6].

In this paper, we study the perfect domination number, locating-domination
number and open-locating-domination number for the Mycielski M(G) of a
graph G.

2. Perfect domination numbers of Mycielski graphs

For our convenience, let φ : U → V be the function defined by φ(ui) = vi
for each i = 1, 2, . . . , n.

Lemma 2.1. Let M(G) be the Mycielski graph of G. If S is a perfect dom-
inating set of M(G), then there exists a perfect dominating set D of G such
that |S| ≥ |D|+ 1. Hence γp(M(G)) ≥ γp(G) + 1.

Proof. It is clear that this lemma is true for any null graph G. From now on,
we assume that G has at least one edge, that is, G is not a null graph. Let S
be a PDS of M(G). We consider the following two cases.

Case 1: w ∈ S.
Let D be the set (S∩V )∪φ(S∩U). Now for any v ∈ V \D, v is adjacent
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to unique vertex in D, and hence D is a PDS of G. Furthermore
|D| ≤ |S ∩ V |+ |S ∩ U | = |S| − 1.

Case 2: w 6∈ S.
Since w ∈ NM(G)(S) and S is a PDS, |S ∩ U | = 1. Let S ∩ U =
{ui}. Since NM(G)(ui) ∩ U = ∅ and NM(G)(ui) does not contain vi,
NM(G)[S ∩ V ] contains (U \ {ui}) ∪ {vi}. Let D = S ∩ V . If vi is not
an element of D, then vi is adjacent to a unique vertex in D. For any
vertex vj ∈ V − (D ∪ {vi}), uj is adjacent to a unique vertex in D,
which implies that vj is adjacent to a unique vertex in D. Therefore
D is a PDS of G, and |S| = |S ∩ V |+ 1 = |D|+ 1.

This completes the proof. �

Lemma 2.2. For any positive integer n, there exists a graph Gn such that
γp(M(Gn)) = γp(Gn) + n.

Proof. For n = 1, let G1 be a null graph on V . Then γp(G1) = |V |. Since V is
independent in M(G1), every PDS of M(G1) must contain V . Set S = {w}∪V .
Then S is a PDS of M(G1) and hence γp(M(G1)) ≤ |V | + 1. Since V is not
a dominating set of M(G1), we have γp(M(G1)) ≥ |V | + 1. So γp(M(G1)) =
|V |+ 1 = γp(G1) + 1.

For n ≥ 2, let Gn be the disjoint union of n−1 copies of the complete graph
K2. Note that γp(Gn) = n − 1. Now M(Gn) contains exactly n − 1 blocks
and each of them is isomorphic to the cycle C5 of length 5. Let S = U ∪ {w}.
Then S is a PDS of M(G) and hence γp(M(Gn)) ≤ 2n − 1. Let S1 be a
PDS of Gn. If S1 contains w, then one can check that S1 contains at least 3
vertices including w in each block and hence |S1| ≥ 2n − 1. Now we assume
that S1 does not contain w. Then |S1 ∩ U | = 1 and S1 contains all element
in V . So |S1| ≥ 2n − 1. This implies that γp(M(Gn)) ≥ 2n − 1. Therefore
γp(M(Gn)) = 2n− 1 = γp(Gn) + n. �

By combining Lemmas 2.1 and 2.2, we have the following theorem.

Theorem 2.3. For any graph G, γp(M(G)) ≥ γp(G) + 1 and for any positive
integer n, there exists a graph Gn such that γp(M(Gn)) = γp(Gn) + n.

Even though we know the existence of Gn such that γp(M(Gn)) = γp(Gn)+
n, we do not know which graphs satisfy such a property. So, we pose the
following problem.

Problem. For each n, characterize all graphs G having the property that
γp(M(G)) = γp(G) + n.

An independent perfect dominating set S of V is called an efficient dominat-
ing set of G. Note that not every graph has an efficient dominating set. The
following theorem gives a characterization of graphs G whose Mycielski graph
has an efficient dominating set.
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Theorem 2.4. For a graph G, M(G) has an efficient dominating set if and
only if G is a null graph.

Proof. If G is a null graph, then {w}∪V is an efficient dominating set of M(G).
Suppose that G has an edge vivj and S is an efficient dominating set of

M(G). Assume that w ∈ S. Then S ∩ U = ∅ and for any v ∈ S ∩ V ,
NM(G)(v)∩U = ∅, which implies that v is an isolated vertex in M(G). So nei-
ther vi nor vj belong to S and furthermore vi 6∈ NM(G)(S) and vj 6∈ NM(G)(S),
a contradiction. Therefore w 6∈ S and hence |S ∩ U | = 1. Without loss
of generality, we may assume that S ∩ U = {u1}. Since S is independent,
NM(G)(u1) ∩ (S ∩ V ) = ∅. It means that v1 6∈ NM(G)(S ∩ V ). From this, we
have v1 ∈ S ∩ V and hence v1 is an isolated vertex. Since ui 6∈ S ∩ U , there is
vk ∈ S ∩ V such that ui ∈ NM(G)(vk). Since S is an efficient dominating set
of M(G), NM(G)(vk) ∩ S = ∅ and it implies that uk is not dominated by S, a
contradiction. Therefore if M(G) has an efficient dominating set , then G is a
null graph. �

3. Locating-domination numbers of Mycielski graphs

For the study of locating domination number, we need more terminologies.
For a subset D of G, we define an equivalence relation ∼D on V (G) by u ∼D v
if and only if N(u)∩D=N(v)∩D and let ΛL(G)= |V (G)|−max {|V (G)/ ∼D | :
D is a γL(G)-set of G}, where D is called a γL(G)-set of G if D is a LDS of G
satisfying |D| = γL(G). Note that if D is a locating dominating set of G, then
u �D v for any distinct vertices u and v in V (G)−D.

Theorem 3.1. For any graph G, γL(M(G)) ≤ min{2γL(G), γL(G) + 1 +
ΛL(G)}.

Proof. Let D = {v1, v2, . . . , v`} be a LDS of G. By a simple computation, we
can see that the set S = {v1, . . . , v`, u1, . . . , u`} is a LDS of M(G). Hence
γL(M(G)) ≤ 2γL(G). Next, we aim to show that γL(M(G)) ≤ γL(G) + 1 +
ΛL(G). Let |D/ ∼D | = h and let {vi1 , vi2 , . . . , vih} be the set of all representa-
tives of D/ ∼D. Let k be the cardinality |{v∈V \D : v ∼D u for some u in D}|.
Note that k = |V \D|+ |D/ ∼D | − |V/ ∼D |.

Assume that vj1 , vj2 , . . . , vjk are k elements in V \D such that N(vis)∩D =
N(vjs) ∩ D for each s = 1, . . . , k. Set S = D ∪ {w} ∪ ({u1, u2, . . . , u`} \
{uik+1

, uik+2
, . . . , uih}). Now one can check that S is a dominating set of M(G).

For any v ∈ V \S, NM(G)(v)∩S is the disjoint union of the sets NG(v)∩D
and NM(G)(v) ∩ ({u1, u2, . . . , u`} \ {uik+1

, uik+2
, . . . , uih}). For any u ∈ U \ S,

NM(G)(u) ∩ S is the disjoint union of the sets NG(φ(u)) ∩ D and {w}. Let
x and y be two distinct elements in V (M(G)) \ S. If x, y ∈ V \ S, then
NM(G)(x) ∩ S 6= NM(G)(y) ∩ S because NG(x) ∩D 6= NG(y) ∩D. If x ∈ V \ S
and y ∈ U \ S, then NM(G)(x)∩ S 6= NM(G)(y)∩ S because w 6∈ NM(G)(x)∩ S
but w ∈ NM(G)(y)∩S. Assume that x and y belong to U \S. Note that U \S is
the disjoint union of two sets U \ {u1, u2, . . . , u`} and {uik+1

, uik+2
, . . . , uih}. If
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both x and y belong to (U\{u1, u2, . . . , u`}), thenNG(φ(x))∩D 6= NG(φ(y))∩D
because D is a LDS of G. If both x and y belong to {uik+1

, uik+2
, . . . , uih}, then

we have NG(φ(x))∩D 6= NG(φ(y))∩D because φ(x) �D φ(y). For the last case,
let x ∈ (U \ {u1, u2, . . . , u`}) and y ∈ {uik+1

, uik+2
, . . . , uih}. Since φ(y) ∈ D

and φ(y) �D v for any v ∈ V \ D, we have NG(φ(x)) ∩ D 6= NG(φ(y)) ∩ D.
Therefore S is a LDS of M(G).

Since |S| = `+1+(`−h)+k = |D|+1+(|D|−|D/ ∼D |)+(|V \D|+|D/ ∼D |
−|V/ ∼D |) = |D|+1+|V |−|V/ ∼D |, we have γL(M(G)) ≤ γL(G)+1+ΛL(G).
This completes the proof. �

Next, we aim to compute the number γLp (M(G)). For our convenience, let
ωH(G) be the number of components in G that are isomorphic to H for any
graphs H and G.

Theorem 3.2. For any graph G, γLp (M(G)) = 2|V |+α(G)− 2ωK2
(G), where

α(G) = 0 if G has an isolated vertex and α(G) = 1 otherwise.

Proof. For a graph G, let V ′ be the set of all vertices of G not belonging
to component isomorphic to K2. If G has an isolated vertex vi, then S =
{w}∪(U−{ui})∪V ′ is a PLDS of M(G) and hence γLp (M(G) ≤ 2|V |−2ωK2(G).
For a graph G having no isolated vertex, S = {w} ∪ U ∪ V ′ is a PLDS of
M(G). Hence γLp (M(G) ≤ 2|V | + 1 − 2ωK2

(G). Therefore for any graph G,

γLp (M(G) ≤ 2|V |+α(G)−2ωK2
(G), where α(G) = 0 if G has an isolated vertex

and α(G) = 1 otherwise.
Now it suffices to show that γLp (M(G) ≥ 2|V | + α(G) − 2ωK2

(G) for any
graph G. Let S be a PLDS of M(G). Our discussion can be divided into the
following two cases.

Case 1: w ∈ S
Suppose that there exist distinct vertices u, v in U − S. Then both u and v
are adjacent to w and hence S is not a PLDS of M(G), a contradiction. So,
|S ∩ U | = |U | or |U | − 1. Assume that |S ∩ U | = |U |. Then any vertex v ∈ V
satisfying |NG(v)| 6= 1 belongs to S. This implies that |S∩V | ≥ |V |−2ωK2(G)
and hence |S| ≥ 2|V |+ 1− 2ωK2(G).

For the other case, let |S ∩U | = |U | − 1. Without loss of generality, we may
assume that U \ S = {u1}.

Subcase 1.1: φ(u1) = v1 is an isolated vertex in G.
In this case v1 must be in S. Suppose that there exists a vertex v ∈
V − S such that |NG(v)| 6= 1. If |NG(v)| = 0, namely, v is an isolated
vertex, then v is not dominated by S, a contradiction. If |NG(v)| ≥ 2,
then v is dominated by at least two vertices in S ∩ U , which is a
contradiction. Therefore any vertex v ∈ V satisfying |NG(v)| 6= 1
belongs to S. So |S| ≥ 2|V | − 2ωK2

(G).
Subcase 1.2: φ(u1) = v1 is not an isolated vertex in G.

In this case v1 must be in S. In deed if v1 6∈ S, then there exists a unique
u2 ∈ (S ∩ U) such that v1 and u2 are adjacent. Since S is a PLDS,
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φ(u2) = v2 6∈ S ∩ V and then there exists a unique u3 ∈ (S ∩ U) such
that v2 and u3 are adjacent. Since S is a PLDS, φ(u3) = v3 6∈ S ∩ V .
So NM(G)(v1)∩S = {u2} = NM(G)(v3)∩S, which contradicts the fact
that S is a perfect locating-domination set.

For any v ∈ N(v1)∩V , v 6∈ S because v is adjacent to u1 belonging to
NM(G)(w). This implies |N(v1)| = 1. If |NG(v)| ≥ 2, then NM(G)(v)∩
S contains both v1 and some vertex in U , a contradiction. So the
component C of G containing v1 is isomorphic to K2. Any vertex
v′ ∈ V \ V (C) satisfying |NG(v′)| 6= 1 belongs to S. This implies that
|S ∩ V | ≥ |V | − 2ωK2(G) + 1 and hence |S| ≥ 2|V |+ 1− 2ωK2(G).

Case 2: w 6∈ S.
In this case, |S ∩ U | = 1. Without loss of generality, we may assume that
S ∩ U = {u1}.

Subcase 2.1: φ(u1) = v1 is an isolated vertex in G.
In this case v1 must be in S. For any v ∈ (S ∩ V ) \ {v1}, we have
|NG(v)| = 1.

Suppose that V \ S is not empty. For any vi ∈ V \ S, there is a
unique ṽ ∈ (S ∩ V ) such that vi and ṽ are adjacent. This means that
NM(G)(vi) ∩ S = NM(G)(ui) ∩ S = {ṽ}, a contradiction. Therefore
S ∩ V = V and each component of G − {v1} is isomorphic to K2. So
|S| = |V |+ 1 = 2|V | − 2ωK2

(G).
Subcase 2.2: φ(u1) = v1 is not an isolated vertex in G.

In this case v1 must be in S ∩ V . In deed, if v1 6∈ S ∩ V , then there
exists a unique v2 ∈ (S ∩ V ) such that v1 and v2 are adjacent. Since
u2 6∈ S, there exists a unique v3 ∈ (S ∩ V ) such that v3 and u2 are
adjacent. This implies that NM(G)(v1) ∩ S = {v2} = NM(G)(u3) ∩ S,
which contradicts the fact that S is a perfect locating-dominating set.

Since v1 is not isolated, there exists a vertex v2 in NG(v1). Since S
is a PLDS of M(G), v2 ∈ S. Suppose that there is a vertex vi ∈ V \
{v1, v2} adjacent to v1 or v2. If vi and v1 are adjacent, thenNM(G)(u2)∩
S = NM(G)(ui) ∩ S = {v1}, a contradiction. If vi and v2 are adjacent,
then |NM(G)(u2) ∩ S| ≥ 2 or NM(G)(vi) ∩ S = NM(G)(ui) ∩ S = {v2}
depending on vi ∈ S or not. In any cases, a contradiction occurs.

Therefore the component containing v1 and v2 is isomorphic to K2.
By similar reason with Subcase 2.1, other components of G are isomor-
phic to K2 and S∩V = V . Therefore |S| = |V |+1 = 2|V |+1−2ωK2(G).

In any cases, we showed that γLp (M(G) ≥ 2|V | + α(G) − 2ωK2
(G), where

α(G) = 0 if G has an isolated vertex and α(G) = 1 otherwise.
Therefore, γLp (M(G) = 2|V |+ α(G)− 2ωK2(G). �

Now, we aim to compute the open locating-domination numbers of the My-
cielski graphs when an OLDS of G exists.
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Theorem 3.3. For any graph G which has an OLDS, γOL(M(G)) = γOL(G)+
2.

Proof. Let S1 be an OLDS of G such that |S1| = γOL(G). Now for any
u ∈ U , one can check that the set S1 ∪ {u,w} is an OLDS of M(G). Hence
γOL(M(G)) ≤ γOL(G) + 2. Now it suffices to show that γOL(M(G)) ≥
γOL(G) + 2.

First, we aim to show that for an OLDS S of M(G), |S| ≥ γOL(G) + 1 and
S ∩ V is an OLDS of G. Let D = S ∩ V . By a simple computation, we can see
that NG(vi)∩D = NM(G)(ui)∩D and NM(G)(ui)∩S = (NM(G)(ui)∩D)∪A for
each i = 1, 2, . . . , |V |, where A = {w} if w ∈ S and A = ∅ otherwise. From this,
we can deduce that D is an OLDS of G. By considering S as a γOL(M(G))-set,
we have γOL(M(G)) ≥ 1 + γOL(G) because NM(G)(w) ∩ (S ∩ U) 6= ∅.

Now it suffices to show that γOL(M(G)) 6= γOL(G) + 1. Suppose that there
exists an OLDS S1 of M(G) such that |S1| = γOL(G) + 1. Since S1 ∩ V is an
OLDS of G and NM(G)(w)∩(S1∩U) 6= ∅, one can say that S1∩V is a γOL(G)-
set, w 6∈ S1, and |S1 ∩ U | = 1. Let S1 ∩ U = {u1}. Now NM(G)(u1) ∩ S1 =
NG(v1) ∩D = NM(G)(v1) ∩ S1. This contradicts the fact that S1 is an OLDS
of M(G)). It completes the proof. �
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