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ALGEBRAIC RICCI SOLITONS IN THE FINSLERIAN CASE

Guocheng Jiao and Zaili Yan

Abstract. In this paper, we study algebraic Ricci solitons in the Finsle-

rian case. We show that any simply connected Finslerian algebraic Ricci

soliton is a Finslerian Ricci soliton. Furthermore, we study Randers al-
gebraic Ricci solitons. It turns out that a shrinking, steady, or expanding

Randers algebraic Ricci soliton with vanishing S-curvature is Einstein,
locally Minkowskian, or Riemannian, respectively.

1. Introduction

The problem to find a distinguished metric on a smooth manifold is impor-
tant in differential geometry. The Einstein metrics and Ricci soliton metrics
are candidates [5]. A Ricci soliton g on a manifold M is a Riemannian metric
satisfying

ric = cg + LXg,

where ric is the Ricci curvature of (M, g), c ∈ R, and X is a smooth vector
field on M [6]. In particular, they correspond to self-similar solutions of the
famous Hamilton’s Ricci flow

∂

∂t
g(t)ij = −2[ricg(t)]ij .

That is, g is the initial value of a solution to the Ricci flow of the form
g(t) = c(t)ϕ∗t g, where c(t) is a scaling parameter, and ϕt is a diffeomorphism of
M . In 1982, Hamilton [10] showed that a closed three-manifold with positive
Ricci curvature is diffeomorphic to S3. Since then, the study of the Ricci flow
has been one of the central problems in differential geometry. For instance,
Perelman [18] proved Thurston’s geometrization conjecture.

In this paper, we study algebraic Ricci solitons on homogeneous Finsler
spaces. The concept of an algebraic Ricci soliton was first introduced by Lauret
in the Riemannian case [15]. Lauret proved that left invariant Ricci solitons on
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homogenous nilmanifolds are algebraic Ricci solitons. In the literature, these
algebraic Ricci solitons are called Ricci nilsolitons.

In the general homogeneous Riemannian case, (semi-)algebraic Ricci solitons
have been studied extensively by Jablonski [12,13], defined as follows. Let G be
a Lie group with a compact subgroup H, and g = h+m be a reductive decom-
position of g, where g and h denote the Lie algebras of G and H, respectively.
We say a G-invariant Riemannian metric g on G/H is a G-semi-algebraic Ricci
soliton if it’s Ricci operator Ric satisfies

(1) Ric = cId +
1

2
(Dm +Dt

m)

for some derivation D ∈ Der(g) satisfying D(h) ⊂ h. Here Dm : m → m is
the map induced by D, and Dt

m is the adjoint map of Dm with respect to
the inner product g|m induced by g on the tangent space m = TeH(G/H).
Furthermore, it is said to be a G-algebraic Ricci soliton if Dm = Dt

m. Notice
that the definition of (semi-)algebraic is relative to a choice of transitive group
G. Jablonski proved the following important results.

(1) A connected homogeneous Ricci solition (M, g) is a semi-algebraic Ricci
solition relative to the full isometry group G = Iso(M, g) [13].

(2) Every G-semi-algebraic Ricci solition is necessarily G-algebraic [12].
Now we turn to the Finslerian case. The concept of Ricci flow in Finsler

geometry is first considered by Bao [2] in the following sense,

(2)
∂

∂t
lnFt = − 1

F 2
t

· ricFt
,

where ricFt
denotes the Ricci curvature of Finsler space (M,Ft). As in the

Riemannian case, we say F is a Finslerian Ricci soliton if there exists diffeo-
morphisms ϕt of M such that Ft = c(t)ϕ∗tF is a solution to the Ricci flow (2)
starting at F0 = F for some scaling function c(t) > 0.

In the present work, we introduce algebraic Ricci solitons in the Finslerian
case. We show that any simply connected Finslerian algebraic Ricci soliton
is a Finslerian Ricci soliton. Furthermore, we study Randers algebraic Ricci
solitons with vanishing S-curvature, and obtain a complete description of such
metrics.

This paper is organized as follows. In Section 2, we recall some fundamental
facts about Finsler spaces. In Section 3, we introduce algebraic Ricci solitons
in the Finslerian case. In Section 4, we study Randers algebraic Ricci solitons.

2. Finsler spaces

In this section, we review some fundamental facts about Finsler spaces, for
details, see [3]. Throughout this paper, manifolds are always assumed to be
connected and smooth.

Recall that a Minkowski norm on V is a real function F on V which is
smooth on V \{0} and satisfies the following conditions:
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(1) F (y) ≥ 0,∀y ∈ V ;
(2) F (λy) = λF (y),∀λ > 0;
(3) For any basis ε1, ε2, . . . , εn of V , write F (y) = F (y1, y2, . . . , yn) for

y = yiεi. Then the Hessian matrix

(gij) :=

([1

2
F 2
]
yiyj

)
is positive-definite at any point of V \{0}.

For any Minkowski norm F on a real vector space V , one defines

Cijk =
1

4
[F 2]yiyjyk .

Then for any y 6= 0, we can define two tensors on V , namely, the fundamental
tensor and the Cartan tensor. They are defined respectively as

gy(u, v) = gij(y)uivj ,

Cy(u, v, w) = Cijk(y)uivjwk.

By the homogeneity of F , one easily sees that

gy(u, v) =
1

2

∂2

∂s∂t
F 2(y + su+ tv)

∣∣∣
s=t=0

,

and that

Cy(u, v, w) =
1

4

∂3

∂r∂s∂t
F 2(y + ru+ sv + tw)

∣∣∣
r=s=t=0

.

In particular, one has

F 2(y) = gy(y, y), Cy(y, u, v) = 0,

and
d

dt
F 2(y + tu)

∣∣∣
t=0

= 2gy(y, u).

A Finsler metric on an n-dimensional smooth manifold M is a function
F : TM → [0,+∞) which is C∞ on the slit tangent bundle TM\{0} and
whose restriction to any tangent space TxM , x ∈M is a Minkowski norm.

The notion of Riemann curvature for Riemannian metrics can be extended
to Finsler metrics. For a nonzero vector y ∈ TxM\{0}, the Riemann curvature
Ry : TxM → TxM is a linear map defined by

Ry(u) = Rik(y)uk
∂

∂xi
, u = ui

∂

∂xi
,

where

Rik(y) = 2
∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj

∂2Gi

∂yj∂yk
− ∂Gi∂Gj

∂yj∂yk
,

Gi(y) =
1

4
gil
[
∂2(F 2)

∂xk∂yl
yk − ∂(F 2)

∂xl

]
,
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and (gij) is the inverse matrix of (gij). The trace of the Riemann curvature
Ry is a scalar function ric on TM

ric(y) = tr(Ry),

which is called the Ricci curvature of (M,F ). We say that (M,F ) is Einstein
if ric(y) = cF 2(y) for some constant c.

We now recall the notion of S-curvature of a Finsler space. It is a quantity
to measure the rate of change of the volume form of a Finsler space along
geodesics [20]. S-curvature is a non-Riemannian quantity, or in other words, any
Riemannian manifold has vanishing S-curvature. Let V be an n-dimensional
real vector space and F be a Minkowski norm on V . For a basis {vi} of V , let

σF =
Vol(Bn)

Vol{(yi) ∈ Rn |F (yivi) < 1}
,

where Vol means the volume of a subset in the standard Euclidean space Rn

and Bn is the open ball of radius 1. This quantity is generally dependent on
the choice of the basis {vi}. But it is easily seen that

τ(y) = ln

√
det(gij(y))

σF
, y ∈ V \{0}

is independent of the choice of the basis. The quantity τ = τ(y) is called
the distortion of (V, F ). For any y ∈ TxM\{0}, let σ(t) be the geodesic with
σ(0) = x and σ̇(0) = y. Then the quantity

S(x, y) =
d

dt
[τ(σ(t), σ̇(t))]

∣∣∣
t=0

is called the S-curvature of the Finsler space (M,F ).

3. Algebraic Ricci solitons

Recall that the group of isometries of a Finsler space (M,F ) is a Lie trans-
formation group of M [8]. A Finsler space (M,F ) is called homogeneous if
its isometry group acts transitively on M . A homogeneous Finsler space can
be expressed as (G/H,F ), where G is a connected Lie group, H is a compact
subgroup of G and F is invariant under the action of G. Moveover, the action
of G on G/H is almost effective and the Lie algebra g of G has a reductive
decomposition

g = h + m,

where h is the Lie algebra of H and m is a subspace of g satisfying Ad(h)(m) ⊂
m,∀h ∈ H. We identify m with the tangent space To(G/H) of G/H at the ori-
gin o = eH through the mapping X 7→ d

dt (exp(tX)H)|t=0, X ∈ m. Under this
identification, G-invariant Finsler metric on G/H is in one-to-one correspon-
dence with H-invariant Minkowski norm on m. See [7] for more information on
invariant Finsler metrics.
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Definition. A homogeneous Finsler space (G/H,F ) with a reductive decom-
position g = h+m is said to be a (Finslerian) G-algebraic Ricci soliton if there
exist c ∈ R and D ∈ Der(g) such that Dh ⊂ h and

(3) ric(y) = cF 2(y) + gy(y,Dmy), ∀y ∈ m,

where Dm := pr ◦D|m and pr : g = h + m −→ m is the linear projection.
Moreover, it is called a shrinking, steady, or expanding algebraic Ricci soliton

according to c > 0, c = 0, c < 0, respectively.

We should mention that (see Lemma 3.10 of [14]), if in addition that K(h,m)
= 0, then Dm ⊂ m, and thus Dm = D|m, where K is the Killing form of g.
When F is Riemannian, equation (3) is clearly equivalent to (1).

Definition. A homogeneous Ricci soliton Finsler space (M,F ) is called alge-
braic if there exists a connected Lie subgroup G ⊂ Iso(M,F ) acting transitively
on M such that F is a G-algebraic Ricci soliton.

In the Riemannian case, any simply connected algebraic Ricci soliton is a
Ricci soliton. Inspired by the proof of Proposition 3.3 of [14], we obtain:

Proposition 3.1. Any simply connected Finslerian algebraic Ricci soliton is
a Finslerian Ricci soliton.

Proof. We can assume that G is simply connected and still have that G/H
is almost effective. Notice that H is therefore connected as G/H is simply
connected. Since D ∈ Der(g) we have that etD ∈ Aut(g) and thus there exists
ϕ̃t ∈ Aut(G) such that dϕ̃t|e = etD for all t ∈ R. By using that H is connected
and Dh ⊂ h, it is easy to see that ϕ̃t(H) = H for all t. This implies that ϕ̃t
defines a diffeomorphism of M = G/H by ϕt(gH) = ϕ̃t(g)H for any g ∈ G,
which therefore satisfies at the origin that dϕt|o = etDm . Set c(t) =

√
1− 2ct

and s(t) = 1
2c ln(1− 2ct), we will show that Ft = c(t)ϕ∗s(t)F satisfies the Ricci

flow equation (2). Obviously, Ft is G-invariant for all t, and hence it is sufficient
to verify the equation (2) at the origin point.

Note that, for any y ∈ m, (ϕ∗tF )(y) = F (etDmy), and then

(
∂

∂t
ϕ∗s(t)F )(y) =

∂

∂t
F (es(t)Dmy)

=
1

2F (es(t)Dmy)
· ∂
∂t
ges(t)Dmy(es(t)Dmy, es(t)Dmy)

=
1

F (es(t)Dmy)
· ges(t)Dmy(s′(t)Dme

s(t)Dmy, es(t)Dmy)

=
s′(t)

F (es(t)Dmy)
· [ric(es(t)Dmy)− cF 2(es(t)Dmy)].

Notice that es(t)Dm ∈ Aut(G) for all t, we have

ricFt(y) = ricϕ∗
s(t)

F (y) = ric(dϕs(t)y) = ric(es(t)Dmy).
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Therefore
∂

∂t
ϕ∗s(t)F =

c(t)s′(t)

Ft
ricFt −

cs′(t)

c(t)
Ft.

Notice that c′(t)
c(t) − cs

′(t) = 0 and c2(t)s′(t) = −1, it follows that

∂

∂t
lnFt =

1

Ft
· ∂
∂t
Ft

=
1

Ft

[
c′(t)

c(t)
Ft + c(t)

∂

∂t
ϕ∗s(t)F

]
=
c′(t)

c(t)
− cs′(t) +

c2(t)s′(t)

F 2
t

ricFt

= − 1

F 2
t

ricFt
.

This completes the proof of the proposition. �

4. Randers algebraic Ricci solitons

In this section, we study Randers algebraic Ricci solitons with vanishing
S-curvature. We first recall some results on invariant Randers metrics. Ran-
ders metrics were introduced by G. Randers in 1941, in the context of general
relativity. They are Finsler metrics of the form F = α + β, where α is a Rie-
mannian metric and β is a smooth 1-form on M whose length with respect to
α is everywhere less than 1. In the homogeneous case, both the Riemannian
metric α and 1-form β are invariant under the action of G. Then the Randers
metric F is uniquely determined by a pair (〈·, ·〉, u), where 〈·, ·〉 is the inner
product on m induced by the Riemannian metric α, and u is an H-fixed vector
in m with length less than 1, satisfying β(y) = 〈y, u〉, ∀y ∈ m. In this case,

F (y) =
√
〈y, y〉+ 〈y, u〉.

There is another presentation of a Randers metric, by the so-called naviga-
tion data

F (x, y) =

√
h(y,W )2 + λh(y, y)

λ
− h(y,W )

λ
,

where h is a Riemannian metric, W is a vector field onM with h(W,W ) < 1 and
λ = 1−h(W,W ). The pair (h,W ) is called the navigation data of the Randers
metric F . This version of a Randers metric is convenient when handling some
problems concerning the flag curvature and Ricci curvature [4].

Lemma 4.1 (Theorem 1.4 of [11]). Let (G/H,F = α + β) be a homogeneous
Randers space with navigation data (h,W ). Then F has vanishing S-curvature
if and only if W is a Killing vector field with respect to h, if and only if

〈[u, x]m, y〉+ 〈x, [u, y]m〉 = 0, ∀x, y ∈ m.
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Theorem 4.2 (Theorem 3.4 of [9]). Let G/H, F , α, m, u, be as above. Then
the Ricci curvature of the homogeneous Randers metric is given by

ric(y) = ricα(y, y)− |y|〈[Z, y]m, u〉+
1

2
|y|
∑
k,l

〈[uk, ul]m, u〉〈[uk, ul]m, y〉

+
1

4
|y|2

∑
k,l

〈[uk, ul]m, u〉2 −
(n− 1)|y|
F (y)

∑
l

〈U(ul, y), u〉〈[ul, y]m, u〉

+
1

2

∑
l

〈[y, ul]m, u〉2 −
n− 1

F (y)
〈U(U(y, y), y), u〉

+
(n− 1)|y|

2F (y)
〈U(u, u), U(y, y)〉+

(n− 1)|y|2

2F (y)
〈[U(u, u), y]m, u〉

+
3(n− 1)

4F 2(y)

(
〈U(y, y), u〉 − |y|〈U(u, u), y〉

)2
,

where y is a non-zero vector in m, |y| =
√
〈y, y〉, {ul} is an orthonormal basis

of m with respect to 〈·, ·〉, U : m×m→ m is a bilinear form defined by

2〈U(x, y), z〉 = 〈[z, x]m, y〉+ 〈x, [z, y]m〉, ∀z ∈ m.

Moreover, ricα is the Ricci curvature of (G/H,α) given by

ricα(y, y) = − 1

2
K(y, y)− 1

2

∑
l

〈[y, ul]m, [y, ul]m〉

+
1

4

∑
k,l

〈y, [uk, ul]m〉2 − 〈[Z, y]m, y〉,

K is the Killing form of g, and Z is the unique vector in m defined by 〈Z, y〉 =
tr ad y, ∀y ∈ m.

Combining the above results, we have:

Lemma 4.3. A Randers metric F = α+β on G/H with vanishing S-curvature
is a G-algebraic Ricci soliton if and only if the following two equations hold:

(4)

ricα(y, y) = c(〈y, y〉+ 〈y, u〉2) + 〈y,Dmy〉

− 1

4
〈y, y〉

∑
k,l

〈[uk, ul]m, u〉2 −
1

2

∑
l

〈[y, ul]m, u〉2,

(5)
〈Dmy, u〉 = − 〈[Z, y]m, u〉+

1

2

∑
k,l

〈[uk, ul]m, u〉〈[uk, ul]m, y〉

− 2c〈y, u〉, ∀y ∈ m.

Proof. Since F has vanishing S-curvature, by Lemma 4.1, one has U(u, u) = 0
and

〈U(x, y), u〉 = 0, ∀x, y ∈ m.
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Therefore the Ricci curvature of F can be written as

ric(y) = ricα(y, y)− |y|〈[Z, y]m, u〉+
1

2
|y|
∑
k,l

〈[uk, ul]m, u〉〈[uk, ul]m, y〉

+
1

4
|y|2

∑
k,l

〈[uk, ul]m, u〉2 +
1

2

∑
l

〈[y, ul]m, u〉2, y ∈ m.(6)

On the other hand, an easy computation shows that (see Lemma 6.5 of [21])

(7) gy(y,Dmy) = 〈y + |y|u,Dmy〉.

Plugging (7) into (3), we obtain

(8) ric(y) = c(|y|+ 〈y, u〉)2 + 〈y + |y|u,Dmy〉.

Now it is easy to see that (6) and (8) is equivalent to (4) and (5). �

Proposition 4.4. Let (G/H,F = α+β) be a Randers G-algebraic Ricci soliton
with navigation data (h,W ). If F has vanishing S-curvature, then h is a G-
algebraic Ricci soliton on G/H.

Proof. Let α be the invariant Riemannian metric on G/H defined by

α(X,Y ) = 〈X,Y 〉 − 〈X,u〉〈Y, u〉, X, Y ∈ m.

It is easy to see that h = (1 − 〈u, u〉)α. The following is to prove that α is a
G-algebraic Ricci soliton on G/H by a direct computation.

Putting y = u into (4) and (5), we obtain

ricα(u, u) = c(〈u, u〉+ 〈u, u〉2) + 〈u,Dmu〉 −
1

4
〈u, u〉

∑
k,l

〈[uk, ul]m, u〉2,

and

〈Dmu, u〉 =
1

2

∑
k,l

〈[uk, ul]m, u〉2 − 2c〈u, u〉.

Therefore,

ricα(u, u) = c〈u, u〉(〈u, u〉 − 1) + (
1

2
− 1

4
〈u, u〉)

∑
k,l

〈[uk, ul]m, u〉2.

On the other hand, ricα(u, u) = 1
4

∑
k,l〈[uk, ul]m, u〉2, then one has

(−1

4
+

1

4
〈u, u〉)

∑
k,l

〈[uk, ul]m, u〉2 = c〈u, u〉(〈u, u〉 − 1).

This implies that

(9)
∑
k,l

〈[uk, ul]m, u〉2 = 4c〈u, u〉.

In particular, 〈Dmu, u〉 = 0.
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Now let ricα be the Ricci curvature of (G/H,α). Then for any y ∈ m,

ricα(y, y) = − 1

2
K(y, y)− 1

2

∑
l

α([y, ul]m, [y, ul]m)

+
1

4

∑
k,l

α(y, [uk, ul]m)2 − α([Z, y]m, y)

= − 1

2
K(y, y)− 1

2

∑
l

〈[y, ul]m, [y, ul]m〉+
1

2

∑
l

〈[y, ul]m, u〉2

+
1

4

∑
k,l

(
〈y, [uk, ul]m〉 − 〈y, u〉〈[uk, ul]m, u〉

)2
− 〈[Z, y]m, y〉+ 〈[Z, y]m, u〉〈y, u〉

= ricα(y, y) +
1

2

∑
l

〈[y, ul]m, u〉2 +
1

4
〈y, u〉2

∑
k,l

〈[uk, ul]m, u〉2

− 1

2
〈y, u〉

∑
k,l

〈y, [uk, ul]m〉〈[uk, ul]m, u〉+ 〈[Z, y]m, u〉〈y, u〉.

Furthermore, according to (4), (5) and (9), we have

ricα(y, y) +
1

2

∑
l

〈[y, ul]m, u〉2 = c(〈y, y〉+ 〈y, u〉2) + 〈y,Dmy〉 − c〈y, y〉〈u, u〉,

and

− 1

2

∑
k,l

〈y, [uk, ul]m〉〈[uk, ul]m, u〉+ 〈[Z, y]m, u〉 = −〈Dmy, u〉 − 2c〈y, u〉.

Therefore

ricα(y, y) = c(〈y, y〉+ 〈y, u〉2) + 〈y,Dmy〉 − c〈y, y〉〈u, u〉(10)

+ c〈y, u〉2〈u, u〉+ 〈y, u〉
(
− 〈Dmy, u〉 − 2c〈y, u〉

)
= c(1− 〈u, u〉)〈y, y〉+ c(〈u, u〉 − 1)〈y, u〉2

+ 〈y,Dmy〉 − 〈y, u〉〈Dmy, u〉
= c(1− 〈u, u〉)α(y, y) + α(y,Dmy).

This asserts that α is a G-semi-algebraic Ricci soliton on G/H. Now according
to a deep result of [12], every G-semi-algebraic Ricci soliton is necessarily G-
algebraic. �

Now we can state the main result in this paper.

Theorem 4.5. Let (M,F ) be a Randers algebraic Ricci soliton with vanishing
S-curvature.

(1) If (M,F ) is shrinking, then it is Einstein.
(2) If (M,F ) is steady, then it is locally Minkowskian.
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(3) If (M,F ) is expanding, then it is Riemannian.

Proof. Assume G is a Lie subgroup of Iso(M,F ) acting transitively on M , H
is the isotropy subgroup of G at a point p ∈M , and F = α+β is a G-algebraic
Ricci soliton satisfying (3).

If (M,F ) is expanding, that is c < 0. Then it follows from (9) that u = 0,
which implies that F is Riemnannian.

If (M,F ) is shrinking or steady, then by (10), the homogeneous Riemannian
Ricci soliton (M,h) is also shrinking or steady. It follows that (M,h) is in
fact Einstein [17, 19]. That is Dm = 0, F is Einstein. In particular, if c = 0,
(M,h) is Ricci flat, then it is flat [1]. By a result of [16], (M,F ) is flat. Finally,
according to a result of Akbar-Zadeh (see Theorem 12.4.1 of [3]), (M,F ) is
locally Minkowskian. �
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