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MINIMAL TRANSLATION SURFACES WITH RESPECT TO

SEMI-SYMMETRIC CONNECTIONS IN R3 AND R3
1

Yong Wang

Abstract. In this paper, we define and classify minimal translation sur-

faces with respect to a kind of semi-symmetric metric connections and a
kind of semi-symmetric non-metric connections in R3 and R3

1.

1. Introduction

Minimal surfaces are among the most natural objects in differential geom-
etry, and have been studied during the last two and half centuries since J. L.
Lagrange. In particular, minimal surfaces have encountered striking applica-
tions in other fields, like mathematical physics, conformal geometry, computer
aided design, among others. In order to search for more minimal surfaces,
some natural geometric assumptions arise. Translation surfaces were stud-
ied in the Euclidean 3-dimensional space and they are represented as graphs
z = f(x) + g(y), where f and g are smooth functions. Scherk proved in 1835
that, besides the planes, the only minimal translation surfaces are the surfaces
given by

z =
1

a
log

∣∣∣∣cos(ax)

cos(ay)

∣∣∣∣ ,
where a is a non-zero constant. Since then, minimal translation surfaces were
generalized in several directions. For example, the Euclidean space R3 was re-
placed with other spaces of dimension 3-usually being 3-dimensional Lie groups
and the notion of translation was often replaced by using the group operation.
See for example [9,11,12,15,18,20]. Another generalizations of Scherk surfaces
are: affine translation surfaces in Euclidean 3-space [10], affine translation sur-
faces in affine 3-dimensional space [16] and translation surfaces in Galilean
3-space [19]. On the other hand, Scherk surfaces were generalized to mini-
mal translation surfaces in Euclidean spaces of arbitrary dimensions. See for
example [5, 13].
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H. A. Hayden introduced the notion of a semi-symmetric metric connec-
tion on a Riemannian manifold [6]. K. Yano studied a Riemannian manifold
endowed with a semi-symmetric metric connection [17]. Some properties of
a Riemannian manifold and a hypersurface of a Riemannian manifold with a
semi-symmetric metric connection were studied by T. Imai [7, 8]. Z. Nakao
[14] studied submanifolds of a Riemannian manifold with semi-symmetric met-
ric connections. In [3], Gozutok and Esin studied the tangent bundle of a
hypersurface with semi-symmetric metric connections. In [4], Demirbag in-
vestigated the properties of a weakly Ricci symmetric manifold admitting a
semi-symmetric metric connection. N. S. Agashe and M. R. Chafle introduced
the notion of a semisymmetric non-metric connection and studied some of its
properties and submanifolds of a Riemannian manifold with a semi-symmetric
non-metric connection [1, 2].

In this paper, we classify minimal translation surfaces with respect to a kind
of semi-symmetric metric connections and a kind of semi-symmetric non-metric
connections in the 3-dimensional Euclidean space R3 and Minkowski space R3

1.
In Section 2, we classify minimal translation surfaces with respect to a kind of
semi-symmetric metric connections and a kind of semi-symmetric non-metric
connections in R3. In Section 3, we classify minimal translation surfaces with
respect to a kind of semi-symmetric metric connections and a kind of semi-
symmetric non-metric connections in R3

1.

2. Minimal translation surfaces with respect to
semi-symmetric connections in R3

Let R3 be the 3-dimensional Euclidean space with the canonical Euclidean
metric g̃. Let X1 = ∂

∂x , X2 = ∂
∂y , X3 = ∂

∂z . Let ∇L
Xi
Xj = 0 for 1 ≤

i, j ≤ 3 be the Levi-Civita connection on R3. We recall the general semi-
symmetric metric connection on R3 defined by ∇L

XY + g̃(Y, P )X − g̃(X,Y )P
where P = h1X1 +h2X2 +h3X3 and h1, h2, h3 ∈ C∞(R3). In order to simplify
computations in the following, we choose P = X3. We define a special semi-
symmetric metric connection by

(1) ∇XY = ∇L
XY + g̃(Y,X3)X − g̃(X,Y )X3.

The connection ∇ of R3 is given by

∇X1
X1 = −X3, ∇X1

X2 = 0, ∇X1
X3 = X1,

∇X2
X1 = 0, ∇X2

X2 = −X3, ∇X2
X3 = X2,(2)

∇X3
X1 = 0, ∇X3

X2 = 0, ∇X3
X3 = 0.

Definition 2.1. A surface M in R3 is a translation surface if it is given by an
isometric immersion F : U ⊂ R2 → R3 of the form

(3) F(u, v) = (u, v, f(u) + g(v)), (Type I)
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or

(4) F(u, v) = (u, f(u) + g(v), v), (Type II)

or

(5) F(u, v) = (f(u) + g(v), u, v), (Type III)

where f and g are smooth functions on open sets of R.

Let E1 = Fu, E2 = Fv and {E1, E2} be the basis of TM and N be the unit
normal vector field of TM in R3. Let p : TR3 |M→ TM be the projection. The
we have the Gauss formula with respect to ∇ as follows:

(6) ∇XY = p∇XY + σ(X,Y )N,

where X,Y ∈ TM and σ(X,Y ) is the second fundamental form with respect
to ∇. In general, σ(X,Y ) 6= σ(Y,X). Let {e1, e2} be an orthonormal basis
of TM . We define the mean curvature of M with respect to ∇ as follows:
H = 1

2 [σ(e1, e1) + σ(e2, e2)]. Let

(7) E = g̃(Fu,Fu), F = g̃(Fu,Fv), G = g̃(Fv,Fv).

Then

(8) H =
Gg̃(∇E1E1, N)−F g̃(∇E1E2, N)−F g̃(∇E2E1, N)+Eg̃(∇E2E2, N)

2(EG− F 2)
.

We called that M is minimal with respect to ∇ if H = 0. So by (8), M is
minimal with respect to ∇ if and only if

(9) Gg̃(∇E1
E1, N)− F g̃(∇E1

E2, N)− F g̃(∇E2
E1, N) + Eg̃(∇E2

E2, N) = 0.

Let us consider a translation surface M of Type I in R3 parametrized by
F(u, v) = (u, v, f(u) + g(v)). The tangent plane of M is spanned by

(10) Fu = X1 + f ′(u)X3, and Fv = X2 + g′(v)X3,

while the unit normal N (up to orientation) is given by

(11) N =
1

α
[−f ′(u)X1 − g′(v)X2 +X3],

where α2 = f ′(u)2 + g′(v)2 + 1.
We obtain the coefficients of the first fundamental form of F as

(12) E = 1 + f ′(u)2, F = f ′(u)g′(v), G = 1 + g′(v)2.

Then, the semi-symmetric metric connection (1) on the surface is given by
∇FuFu = f ′(u)X1 + [f ′′(u)− 1]X3,
∇FuFv = g′(v)X1,
∇Fv
Fu = f ′(u)X2,

∇Fv
Fv = g′(v)X2 + [g′′(v)− 1]X3.

(13)

Consequently, the minimality condition (9) may be expressed as follows:

(14) f ′′(u)g′(v)2 − 2f ′(u)2 − 2g′(v)2 + f ′(u)2g′′(v) + f ′′(u) + g′′(v)− 2 = 0.
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We will solve (14). Let us assume first that f ′, g′, f ′′ and g′′ are different from
zero at every point. Taking successive derivatives with respect to u and v, we
obtain

(15)
f ′′′

f ′f ′′
= − g′′′

g′g′′
.

In the following, cj denotes a constant where j is a positive integer. Remark
that the left-hand side of equation (15) is a function of u, while the right-hand
side is a function of v. Therefore, there exist three constants c0, c1, c2 such that

(16) f ′′ =
c0
2
f ′2 + c1, g

′′ = −c0
2
g′2 + c2.

Now, plugging (16) into (14) we obtain

(17) (c2 +
c0
2
− 2)f ′2 + c1 + c2 − 2 = (−c1 + 2 +

c0
2

)g′2.

Remark that the left-hand side of equation (17) is a function of u, while the
right-hand side is a function of v. Therefore, (−c1 + 2 + c0

2 )g′2 = c0. Then

g′2 = c̃0 or −c1 + 2 + c0
2 = 0. But we assume that g′ and g′′ are different from

zero at every point, so we get

(18) − c1 + 2 +
c0
2

= 0.

By (17), we get

(19) (c2 +
c0
2
− 2)f ′2 + c1 + c2 − 2 = 0.

Since we assume that f ′ and f ′′ are different from zero at every point, so we
get

(20) c2 +
c0
2
− 2 = 0, c1 + c2 − 2 = 0.

By (18) and (20), we have a contradiction. So in this case, we have no solutions.
Case 1) There exists u0 such that f ′′(u0) 6= 0 and there exists v0 such that

g′′(v0) 6= 0. Then there is an open interval U of u0 such that f ′′|U 6= 0. Then
there exists u1 ∈ U such that f ′(u1) 6= 0 and there is an open interval U1 ⊂ U
of u1 such that f ′|U1 6= 0 and f ′′|U1 6= 0. Similarly, there is an open interval
V1 such that g′|V1

6= 0 and g′′|V1
6= 0. By the above discussions, we know that

we have no solutions in this case.
Case 2) There exists u0 such that f ′′(u0) 6= 0 and g′′(v) = 0. So g′(v) = c3

and g(v) = c3v + c4. By (14), we have

(21) f ′′(u)− 2

c23 + 1
f ′(u)2 − 2 = 0.

The general solution of this ODE is found as

(22) f(u) = −c
2
3 + 1

2
ln

∣∣∣∣∣cos

(
2√
c23 + 1

u− a

)∣∣∣∣∣+ b,
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where a, b are constant. So

(23) F(u, v) = (u, v,−c
2
3 + 1

2
ln

∣∣∣∣∣cos

(
2√
c23 + 1

u− a

)∣∣∣∣∣+ c3v + c5).

Case 3) f ′′(u) = 0 and there exists v0 such that g′′(v0) 6= 0. So f ′(u) = c3
and f(u) = c3u+ c4. Similar to Case 2), we have

(24) F(u, v) = (u, v,−c3
2 + 1

2
ln

∣∣∣∣∣cos

(
2√

c3
2 + 1

v − a1

)∣∣∣∣∣+ c3u+ c6).

where c3, a1 are constant.
Case 4) f ′′(u) = 0 and g′′(v) = 0. By (14), we have −2f ′(u)2−2g′(v)2−2 =

0. This is a contradiction, so we have no solutions in this case.
So we have the following theorem:

Theorem 2.2. Type I minimal translation surfaces with respect to ∇ in R3

are of the forms (23) and (24).

In the following, we obtain all Type II minimal translation surfaces with
respect to ∇ in R3. Let M be a translation surface of Type II parametrized by
F(u, v) = (u, f(u) + g(v), v). The tangent plane of M is spanned by

(25) Fu = X1 + f ′(u)X2, and Fv = g′(v)X2 +X3,

while the unit normal N (up to orientation) is given by

(26) N =
1

β
[f ′(u)X1 −X2 + g′(v)X3],

where β2 = f ′(u)2 + g′(v)2 + 1.
We obtain the coefficients of the first fundamental form of F as

(27) E = 1 + f ′(u)2, F = f ′(u)g′(v), G = 1 + g′(v)2.

Then, the semi-symmetric metric connection (1) on the surface is given by
∇Fu
Fu = f ′′(u)X2 − [f ′(u)2 + 1]X3,

∇Fu
Fv = X1 + f ′(u)X2 − f ′(u)g′(v)X3,

∇Fv
Fu = −f ′(u)g′(v)X3,

∇Fv
Fv = [g′(v) + g′′(v)]X2 − g′(v)2X3.

(28)

Consequently, the minimality condition (9) may be expressed as follows:

(29) 2g′3 + 2f ′2g′ + g′2f ′′ + f ′2g′′ + f ′′ + g′′ + 2g′ = 0.

We will solve (29). Let us assume first that f ′, g′, f ′′ and g′′ are different from
zero at every point. Taking successive derivatives with respect to u and v, we
obtain

(30)
f ′′′

f ′f ′′
= −2g′′ + g′′′

g′g′′
.
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Remark that the left-hand side of equation (30) is a function of u, while the
right-hand side is a function of v. Therefore, there exist two constants c0, c1
such that

(31) f ′′ =
c0
2
f ′2 + c1,

g′′′

g′′
= −c0g′ − 2.

For (29), taking derivative with respect to v, then we have

(32) 6g′2g′′ + 2f ′2g′′ + 2g′g′′f ′′ + f ′2g′′′ + g′′′ + 2g′′ = 0.

Plugging (31) into (32) and g′, g′′ are different from zero, we obtain g′ =
− 2c1−c0

6 . Then g′′ = 0. This is a contradiction, so we have no solutions in
this case.

Case 1) There exists u0 such that f ′′(u0) 6= 0 and there exists v0 such that
g′′(v0) 6= 0. By the above discussions, we know that we have no solutions in
this case.

Case 2) There exists u0 such that f ′′(u0) 6= 0 and g′′(v) = 0. So g′(v) = c̃0
and g(v) = c̃0v + c̃1. By (29), we have

(33) f ′′(u) +
2c̃0

c̃0
2 + 1

f ′(u)2 + 2c̃0 = 0.

Since f ′′ 6= 0, so c̃0 6= 0. The general solution of this ODE is found as

(34) f(u) =
c̃0

2 + 1

2c̃0
ln

∣∣∣∣∣cos

(
2c̃0√
c̃0

2 + 1
u− ã

)∣∣∣∣∣+ b̃,

where ã, b̃ are constant. So

(35) F(u, v) = (u,
c̃0

2 + 1

2c̃0
ln

∣∣∣∣∣cos

(
2c̃0√
c̃0

2 + 1
u− ã

)∣∣∣∣∣+ c̃0v + b, v).

Case 3) f ′′(u) = 0 and there exists v0 such that g′′(v0) 6= 0. So f ′(u) = ĉ0
and f(u) = ĉ0u+ ĉ1. By (29), we have

(36) g′′ +
2

ĉ0 + 1
g′3 + 2g′ = 0.

Let g′ = h. Then we get h′ = − 2
ĉ0+1h

3 − 2h. By g′′(v0) 6= 0, we may set h 6= 0

on an open interval. Let W = h−2. Then we have

(37) W ′ =
4

ĉ0
2 + 1

+ 4W.

Then its solution is W = âe4v − 1
ĉ0

2+1
, where â > 0. So we get

(38) g(v) =

∫ v

0

±1√
âe4x − 1

ĉ0
2+1

dx+ b̂,
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where â, b̂ are constant. In this case, the surface is parametrized by

(39) F(u, v) = (u,

∫ v

0

±1√
âe4x − 1

ĉ0
2+1

dx+ ĉ0u+ b0, v).

Case 4) f ′′(u) = 0 and g′′(v) = 0. Then f ′(u) = c′0 and g′(v) = c′1. By (29),
we get c′1 = 0. Then

(40) F(u, v) = (u, c′0u+ b′, v),

where c′0, b
′ are constant.

So we have the following theorem:

Theorem 2.3. Type II minimal translation surfaces with respect to ∇ in R3

are of the forms (35), (39) and (40).

In the following, we consider Type III minimal translation surfaces with
respect to ∇ in R3. Let M be a translation surface of Type III parametrized
by F(u, v) = (f(u) + g(v), u, v). The tangent plane of M is spanned by

(41) Fu = f ′(u)X1 +X2, and Fv = g′(v)X1 +X3,

while the unit normal N (up to orientation) is given by

(42) N =
1

γ
[X1 − f ′(u)X2 − g′(v)X3],

where γ2 = f ′(u)2 + g′(v)2 + 1.
We obtain the coefficients of the first fundamental form of F as

(43) E = 1 + f ′(u)2, F = f ′(u)g′(v), G = 1 + g′(v)2.

Then, the semi-symmetric metric connection (1) on the surface is given by
∇FuFu = f ′′(u)X1 − [f ′(u)2 + 1]X3,
∇Fu
Fv = f ′(u)X1 +X2 − f ′(u)g′(v)X3,

∇Fv
Fu = −f ′(u)g′(v)X3,

∇Fv
Fv = [g′(v) + g′′(v)]X1 − g′(v)2X3.

(44)

Consequently, the minimality condition (9) may be expressed as follows:

(45) 2g′3 + 2f ′2g′ + g′2f ′′ + f ′2g′′ + f ′′ + g′′ + 2g′ = 0.

(45) is the same as (29), so similar to Theorem 2.3, we can get Type III minimal
translation surfaces with respect to ∇ in R3.

We define a special semi-symmetric non-metric connection by

(46) ∇XY = ∇L
XY + g̃(Y,X3)X.

The connection ∇ of R3 is given by

∇X1
X1 = 0, ∇X1

X2 = 0, ∇X1
X3 = X1,

∇X2
X1 = 0, ∇X2

X2 = 0, ∇X2
X3 = X2,(47)

∇X3
X1 = 0, ∇X3

X2 = 0, ∇X3
X3 = X3.
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In the following, we consider Type I minimal translation surfaces with re-
spect to ∇ in R3. For F(u, v) = (u, v, f(u) + g(v)), then Fu,Fv, N,E, F,G are
computed by (10)-(12).

Then, the semi-symmetric non-metric connection (46) on the surface is given
by 

∇Fu
Fu = f ′(u)X1 + [f ′′(u) + f ′(u)2]X3,

∇FuFv = g′(v)X1 + f ′(u)g′(v)X3,
∇Fv
Fu = f ′(u)X2 + f ′(u)g′(v)X3,

∇Fv
Fv = g′(v)X2 + [g′(v)2 + g′′(v)]X3.

(48)

Similar to (9), we have the minimality condition with respect to ∇. Conse-
quently, the minimality condition may be expressed as follows:

(49)
f ′′(u)

1 + f ′(u)2
= − g′′(v)

1 + g′(v)2
.

Solving (49), we obtain:

Theorem 2.4. Type I minimal translation surfaces with respect to ∇ in R3

are of the following forms

(50) F(u, v) = (u, v, c0u+ c1v + c2),

(51) F(u, v) = (u, v,
1

c
ln
| cos(cu− c3) |
| cos(cv − c4) |

+ c5),

where c 6= 0.

For Type II and III minimal translation surfaces with respect to ∇ in R3,
we also get the equation (49) and we have Theorems similar to Theorem 2.4.

3. Minimal translation surfaces with respect to
semi-symmetric connections in R3

1

Let R3
1 be the 3-dimensional Minkowski space with the canonical Minkowski

metric g̃1 = dx2 +dy2−dz2. Let ∇L
Xi
Xj = 0 for 1 ≤ i, j ≤ 3 be the Levi-Civita

connection on R3
1. We define a special semi-symmetric metric connection by

(52) ∇XY = ∇L
XY + g̃1(Y,X3)X − g̃1(X,Y )X3.

The connection ∇ of R3
1 is given by

∇X1
X1 = −X3, ∇X1

X2 = 0, ∇X1
X3 = −X1,

∇X2X1 = 0, ∇X2X2 = −X3, ∇X2X3 = −X2,(53)

∇X3X1 = 0, ∇X3X2 = 0, ∇X3X3 = 0.

In the following, we assume that M is a spacelike surface of R3
1, that is the

induced metric on M is Riemannian metric. When M is a timelike surface of
R3

1, we have similar discussions. Let us consider a translation surface M of
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Type I in R3
1 parametrized by F(u, v) = (u, v, f(u) + g(v)). Fu and Fv are

given by (10). While the unit normal N (up to orientation) is given by

(54) N =
1

|α1|
[−f ′(u)X1 − g′(v)X2 −X3],

where α2
1 = 1− f ′(u)2 − g′(v)2.

We obtain the coefficients of the first fundamental form of F as

(55) E = 1− f ′(u)2, F = −f ′(u)g′(v), G = 1− g′(v)2.

Then, the semi-symmetric metric connection (52) on the surface is given by
∇FuFu = −f ′(u)X1 + [f ′′(u)− 1]X3,
∇Fu
Fv = −g′(v)X1,

∇Fv
Fu = −f ′(u)X2,

∇Fv
Fv = −g′(v)X2 + [g′′(v)− 1]X3.

(56)

In this case, we have the same minimality condition with (9). So the minimality
condition may be expressed as follows:

(57) f ′′(u)g′(v)2 − 2f ′(u)2 − 2g′(v)2 + f ′(u)2g′′(v)− f ′′(u)− g′′(v) + 2 = 0.

Similar to the discussions of the case 1) in the page 962, we get
Case 1) There exists u0 such that f ′′(u0) 6= 0 and there exists v0 such that

g′′(v0) 6= 0. We know that we have no solutions in this case.
Case 2) There exists u0 such that f ′′(u0) 6= 0 and g′′(v) = 0. So g′(v) = c

and g(v) = cv + c. By (57), we have

(58) (c2 − 1)f ′′(u)− 2f ′(u)2 − 2(c2 − 1) = 0.

If c2 = 1, then f ′ = 0 and f ′′ = 0. This is a contradiction. So c2 6= 1 and we
get

(59) f ′′(u)− 2

c2 − 1
f ′(u)2 − 2 = 0.

If c2 > 1, then the general solution of this ODE (59) is found as

(60) f(u) = −c
2 − 1

2
ln

∣∣∣∣cos

(
2√
c2 − 1

u− a
)∣∣∣∣+ b,

where a, b are constant. So

(61) F(u, v) = (u, v,−c
2 − 1

2
ln

∣∣∣∣cos

(
2√
c2 − 1

u− a
)∣∣∣∣+ cv + b).

If c2 < 1, then the general solution of this ODE (59) is found as

(62) f(u) =

∫ u

0

√
1− c2 + c̃e

− 4√
1−c2

x

1− c̃e
− 4√

1−c2
x

dx,
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where c̃ is a nonzero constant. So

(63) F(u, v) = (u, v,

∫ u

0

√
1− c2 + c̃e

− 4√
1−c2

x

1− c̃e
− 4√

1−c2
x

dx+ cv + b̃).

Case 3) f ′′(u) = 0 and there exists v0 such that g′′(v0) 6= 0. So f ′(u) = ĉ.
Similar to case 2), we have if ĉ 2 > 1, then

(64) F(u, v) = (u, v,− ĉ
2 − 1

2
ln

∣∣∣∣cos

(
2√

ĉ 2 − 1
v − a1

)∣∣∣∣+ ĉu+ b1).

If ĉ2 < 1, then

(65) F(u, v) = (u, v,

∫ v

0

√
1− ĉ 2 + c̃1e

− 4√
1−ĉ 2

x

1− c̃1e
− 4√

1−ĉ 2
x

dx+ ĉu+ b̃).

Case 4) f ′′(u) = 0 and g′′(v) = 0. By (57), we have 1− f ′(u)2 − g′(v)2 = 0.
By N is timelike, then 1 − f ′(u)2 − g′(v)2 > 0. This is a contradiction, so we
have no solutions in this case.

So we have the following theorem:

Theorem 3.1. Type I minimal translation surfaces with respect to ∇ in R3
1

are of the forms (61), (63), (64) and (65).

In the following, we obtain all Type II minimal translation surfaces with
respect to ∇ in R3

1. Let M be a translation surface of Type II parametrized
by F(u, v) = (u, f(u) + g(v), v). Fu and Fv are given by (25). While the unit
normal N (up to orientation) is given by

(66) N =
1

|β1|
[f ′(u)X1 −X2 − g′(v)X3],

where β2
1 = −1− f ′(u)2 + g′(v)2.

We obtain the coefficients of the first fundamental form of F as

(67) E = 1 + f ′(u)2, F = f ′(u)g′(v), G = g′(v)2 − 1.

Then, the semi-symmetric metric connection (52) on the surface is given by
∇Fu
Fu = f ′′(u)X2 − [f ′(u)2 + 1]X3,

∇Fu
Fv = −X1 − f ′(u)X2 − f ′(u)g′(v)X3,

∇FvFu = −f ′(u)g′(v)X3,
∇FvFv = [−g′(v) + g′′(v)]X2 − g′(v)2X3.

(68)

Consequently, the minimality condition may be expressed as follows:

(69) 2g′3 − 2f ′2g′ + g′2f ′′ + f ′2g′′ − f ′′ + g′′ − 2g′ = 0.

We will solve (69). Let us assume first that f ′, g′, f ′′ and g′′ are different from
zero at every point. Taking successive derivatives with respect to u and v, we
obtain

(70)
f ′′′

f ′f ′′
=
−2g′′ + g′′′

g′g′′
.
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Therefore, there exist two constants c0, c1 such that

(71) f ′′ =
c0
2
f ′2 + c1,

g′′′

g′′
= c0g

′ + 2.

For (69), taking derivative with respect to v, then we have

(72) 6g′2g′′ − 2f ′2g′′ + 2g′g′′f ′′ + f ′2g′′′ + g′′′ − 2g′′ = 0.

Plugging (71) into (72) and g′, g′′ are different from zero, we obtain 6g′ =
−2c0f

′2 − 2c1 − c0. Then g′′ = 0. This is a contradiction, so we have no
solutions in this case.

Case 1) There exists u0 such that f ′′(u0) 6= 0 and there exists v0 such that
g′′(v0) 6= 0. By the above discussions, we know that we have no solutions in
this case.

Case 2) There exists u0 such that f ′′(u0) 6= 0 and g′′(v) = 0. So g′(v) = c̃0
and g(v) = c̃0v + c̃1. By (69), we have

(73) (c̃0
2 − 1)f ′′(u)− 2c̃0f

′(u)2 + 2c̃0(c̃0
2 − 1) = 0.

Since f ′′ 6= 0, so c̃0 6= 0 and c̃0
2 6= 1. So

(74) f ′′(u)− 2c̃0

c̃0
2 − 1

f ′(u)2 + 2c̃0 = 0.

The general solution of this ODE (74) is found as if c̃0
2 < 1

(75) f(u) =
1− c̃02

2c̃0
ln

∣∣∣∣∣cos

(
2c̃0√

1− c̃02
u− ã

)∣∣∣∣∣+ b̃,

where ã, b̃ are constant. So

(76) F(u, v) = (u,
1− c̃02

2c̃0
ln

∣∣∣∣∣cos

(
2c̃0√

1− c̃02
u− ã

)∣∣∣∣∣+ c̃0v + b, v).

If c̃0
2 > 1, then the general solution of this ODE (74) is found as

(77) f(u) =

∫ u

0

√
c̃0

2 − 1 + c1e
4c̃0√
c̃0

2−1
x

1− c1e
4c̃0√
c̃0

2−1
x

dx,

where c1 is a nonzero constant. So

(78) F(u, v) = (u,

∫ u

0

√
c̃0

2 − 1 + c1e
4c̃0√
c̃0

2−1
x

1− c1e
4c̃0√
c̃0

2−1
x

dx+ c̃0v + b1, v).

Case 3) f ′′(u) = 0 and there exists v0 such that g′′(v0) 6= 0. So f ′(u) = ĉ0
and f(u) = ĉ0u+ ĉ1. By (3.18), we have

(79) g′′ +
2

ĉ0
2 + 1

g′3 − 2g′ = 0.
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We get

(80) g(v) =

∫ v

0

±1√
âe−4x + 1

ĉ0
2+1

dx+ b̂,

where â 6= 0, b̂ are constant. So

(81) F(u, v) = (u,

∫ v

0

±1√
âe−4x + 1

ĉ0
2+1

dx+ ĉ0u+ b0, v).

Case 4) f ′′(u) = 0 and g′′(v) = 0. Then f ′(u) = c′0 and g′′(v) = c′1. By (69),
we get c′1(c′21 − c′20 − 2) = 0. Then

(82) F(u, v) = (u, c′0u+ c′1v + b′, v),

where c′1 = 0 or (c′21 − c′20 − 2) = 0.
So we have the following theorem:

Theorem 3.2. Type II minimal translation surfaces with respect to ∇ in R3
1

are of the forms (76), (78), (81) and (82).

For Type III minimal translation surfaces with respect to ∇ in R3
1, we also

get (69) and we have Theorem similar to Theorem 3.2.
We define a special semi-symmetric non-metric connection in R3

1 by

(83) ∇XY = ∇L
XY + g̃1(Y,X3)X.

The connection ∇ of R3
1 is given by

∇X1
X1 = 0, ∇X1

X2 = 0, ∇X1
X3 = −X1,

∇X2
X1 = 0, ∇X2

X2 = 0, ∇X2
X3 = −X2,(84)

∇X3
X1 = 0, ∇X3

X2 = 0, ∇X3
X3 = −X3.

In the following, we consider Type I minimal translation surfaces with respect to
∇ in R3

1. For F(u, v) = (u, v, f(u) + g(v)), then Fu,Fv, N,E, F,G is computed
by (54) and (55). Then, the semi-symmetric non-metric connection (83) on the
surface is given by

∇Fu
Fu = −f ′(u)X1 + [f ′′(u)− f ′(u)2]X3,

∇Fu
Fv = −g′(v)X1 − f ′(u)g′(v)X3,

∇Fv
Fu = −f ′(u)X2 − f ′(u)g′(v)X3,

∇FvFv = −g′(v)X2 + [−g′(v)2 + g′′(v)]X3.

(85)

Similar to (9), we have the minimality condition with respect to ∇ in R3
1. N

is timelike, so 1 − f ′(u)2 − g′(v)2 > 0 and 1 − f ′(u)2 > 0 and 1 − g′(v)2 > 0.
Consequently, the minimality condition may be expressed as follows:

(86)
f ′′(u)

1− f ′(u)2
= − g′′(v)

1− g′(v)2
= c0.
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When c0 = 0, we get

(87) F(u, v) = (u, v, c1u+ c2v + c3).

When c0 6= 0, we get

(88) f ′′(u) + c0f
′(u)2 − c0 = 0, g′′(u)− c0g′(u)2 + c0 = 0.

Solving (88), we obtain:

Theorem 3.3. Type I minimal translation surfaces with respect to ∇ in R3
1

are (87) and the following form

(89) F(u, v) = (u, v,
1

c0
ln
| ec0u − ĉe−c0u |
| e−c0v − ĉ1ec0v |

+ a),

where c0, ĉ, ĉ1 6= 0.

For Type II minimal translation surfaces with respect to ∇ in R3
1, and

F(u, v) = (u, f(u) + g(v), v), then Fu,Fv, N,E, F,G is computed by (66) and
(67). Then, the semi-symmetric non-metric connection (83) on the surface is
given by 

∇Fu
Fu = f ′′(u)X2,

∇FuFv = −X1 − f ′(u)X2,
∇FvFu = 0,
∇Fv
Fv = [−g′(v) + g′′(v)]X2 −X3.

(90)

Consequently, the minimality condition may be expressed as follows:

(91)
f ′′(u)

1 + f ′(u)2
=

g′′(v)

1− g′(v)2
= c0.

When c0 = 0, we get

(92) F(u, v) = (u, c1u+ c2v + c3, v).

When c0 6= 0, we get

(93) f ′′(u)− c0f ′(u)2 − c0 = 0, g′′(u) + c0g
′(u)2 − c0 = 0.

Solving (93), we obtain:

Theorem 3.4. Type II minimal translation surfaces with respect to ∇ in R3
1

are (92) and the following form

(94) F(u, v) = (u,
1

c0
ln
| ec0v − c3e−c0v |
| cos(c0u+ c4) |

+ b, v),

where c0, c3 6= 0.

For Type III minimal translation surfaces with respect to ∇ in R3
1, we also

get (91) and we have Theorem similar to Theorem 3.4.
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