Acknowledgement
This study was supported by the USDA CSREES Biotechnology Risk Assessment Grants Program, Agreement Number 2007-33522-18565 and the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Education (2018R1D1A1B07048872).
References
- Adams PB, Ayers WA. 1979. Ecology of Sclerotinia species. Phytopathology 69: 896-899. https://doi.org/10.1094/Phyto-69-896
- Purdy LH. 1979. Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69: 875-880. https://doi.org/10.1094/Phyto-69-875
- Cook GE, Steadman JR, Boosalis MG. 1975. Survival of Whetzelinia sclerotiorum and initial infection of dry edible beans in western Nebraska. Phytopathology 65: 250-255. https://doi.org/10.1094/Phyto-65-250
- Anas O, Reeleder RD. 1987. Recovery of fungi and arthropods from sclerotia of Sclerotinia sclerotiorum in Quebec muck soils. Phytopathology 77: 327-331. https://doi.org/10.1094/Phyto-77-327
- Knudsen GR, Eschen DJ, Dandurand LM, Bin L. 1991. Potential for biocontrol of Sclerotinia sclerotiorum through colonization of sclerotia by Trichoderma harzianum. Plant Dis. 75: 446-470.
- Dandurand LM, Mosher RD, Knudsen GR. 2000. Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soilborne plant pathogens. Can. J. Microbiol. 46: 1051-1057. https://doi.org/10.1139/w00-087
- Zeng W, Wang D, Kirk W, Hao J. 2012. Use of Coniothyrium minitans and other microorganisms for reducing Sclerotinia sclerotiorum. Biol. Control 60: 225-232. https://doi.org/10.1016/j.biocontrol.2011.10.009
- Freckman DW, Caswell EP. 1985. The ecology of nematodes in agroecosystem. Annu. Rev. Phytopathol. 23: 275-296. https://doi.org/10.1146/annurev.py.23.090185.001423
- Neher DA. 2010. Ecology of plant and free-living nematodes in natural and agricultural soil. Annu. Rev. Phytopathol. 48: 371-394. https://doi.org/10.1146/annurev-phyto-073009-114439
- Hasna MK, Insunza V, Lagerlof J, Ramert B. 2007. Food attraction and population growth of fungivorous nematodes with different fungi. Ann. Appl. Biol. 151: 175-182. https://doi.org/10.1111/j.1744-7348.2007.00163.x
- Haraguchi S, Yoshiga T. 2020. Potential of the fungal feeding nematode Aphelenchus avenae to control fungi and the plant parasitic nematode Ditylenchus destructor associated with garlic. Biol. Control 143: 104203. https://doi.org/10.1016/j.biocontrol.2020.104203
- Chen J, Ferris H. 1999. The effects of nematode grazing on nitrogen mineralization during fungal decomposition of organic matter. Soil Biol. Biochem. 31: 1265-1279. https://doi.org/10.1016/S0038-0717(99)00042-5
- Ingham RE, Trofymow JA, Ingham ER, Coleman DC. 1985. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol. Monogr. 55: 119-140. https://doi.org/10.2307/1942528
- Bae Y-S, Knudsen GR. 2001. Influence of a fungus-feeding nematode on growth and biocontrol efficacy of Trichoderma harzianum. Phytopathology 91: 301-306. https://doi.org/10.1094/PHYTO.2001.91.3.301
- Kim TG, Knudsen GR. 2018. Differential selection by nematodes of an introduced biocontrol fungus vs. indigenous fungi in nonsterile soil. J. Microbiol. Biotechnol. 28: 831-838. https://doi.org/10.4014/jmb.1712.12042
- Danielson RM, Davey CB. 1973. Non nutritional factors affecting the growth of Trichoderma in culture. Soil Biol. Biochem. 5: 495-504. https://doi.org/10.1016/0038-0717(73)90039-4
- Bakonyi G, Nagy P, Kovacs-Lang E, Kovacs E, Barabas S, Repasi V, et al. 2007. Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Appl. Soil Ecol. 37: 31-40. https://doi.org/10.1016/j.apsoil.2007.03.008
- Freckman DW. 1986. The ecology of dehydration in soil organisms, pp. 157-168. In Leopold AC (ed.), Membranes, metabolism, and dry organisms, Ed. Cornell University Press, Ithaca, USA.
- Steinberger Y, Sarig S. 1993. Response by soil nematode populations and the soil microbial biomass to a rain episode in the hot, dry Negev desert. Biol. Fert. Soils 16: 188-192. https://doi.org/10.1007/BF00361406
- Ekschmitt K, Griffiths BS. 1998. Soil biodiversity and its implications for ecosystem functioning in a heterogeneous and variable environment. Appl. Soil Ecol. 10: 201-215. https://doi.org/10.1016/S0929-1393(98)00119-X
- Demeure Y, Freckman DW, Van Gundy SD. 1979. Anhydrobiotic coiling of nematodes in soil. J. Nematol. 11: 189-195.
- Jin X, Harman GE, Taylor AG. 1991. Conidial biomass and dessication tolerance of Trichoderma harzianum produced at different medium water potential. Biol. Control 1: 237-243. https://doi.org/10.1016/1049-9644(91)90072-8
- Eastburn DM, Butler EE. 1991. Effects of soil moisture and temperature on the saprophytic ability of Trichoderma harzianum. Mycologia 83: 257-263. https://doi.org/10.1080/00275514.1991.12026009
- Magan N. 1988. Effects of water potential and temperature on spore germination and germ-tube growth in vitro and on straw leaf sheat. Trans. Br. Mycol. Soc. 90: 97-107. https://doi.org/10.1016/S0007-1536(88)80185-2
- Magan N, Lynch JM. 1986. Water potential, growth and cellulolysis of fungi involved in decompostition of cereal residues. J. Gen. Microbiol. 132: 1181-1187.
- Kredics L, Antal Z, Manczinger L. 2000. Influence of water potential on growth, enzyme secretion and in vitro enzyme activities of Trichoderma harzianum at different temperatures. Curr. Microbiol. 40: 310-314. https://doi.org/10.1007/s002849910062
- Lupo S, Dupont J, Bettucci L. 2002. Ecophysiology and saprophytic ability of Trichoderma spp. Cryptogamie Mycol. 23: 71-80.
- Knudsen GR, Bin L. 1990. Effects of temperature, soil moisture, and wheat bran on growth of Trichoderma harzianum from alginate pellets. Phytopathology 80: 724-727. https://doi.org/10.1094/Phyto-80-724
- Bae YS, Knudsen GR. 2007. Effect of sclerotial distribution pattern of Sclerotinia sclerotiorum on biocontrol efficacy of Trichoderma harzianum. Appl. Soil Ecol. 35: 21. https://doi.org/10.1016/j.apsoil.2006.05.014
- Bae Y-S, Knudsen GR. 2000. Cotransformation of Trichoderma harzianum with β-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soil. Appl. Environ. Microbiol. 66: 810-815. https://doi.org/10.1128/AEM.66.2.810-815.2000
- Orr KA, Knudsen GR. 2004. Use of green fluorescent protein and image analysis to quantify proliferation of Trichoderma harzianum in nonsterile soil. Phytopathology 94: 1383-1389. https://doi.org/10.1094/PHYTO.2004.94.12.1383
- Kim TG, Knudsen GR. 2013. Relationship between the biocontrol fungus Trichoderma harzianum and the phytopathogenic fungus Fusarium solani f.sp. pisi. Appl. Soil Ecol. 68: 57-60. https://doi.org/10.1016/j.apsoil.2013.03.009
- Papavizas GC. 1981. Survival of Trichoderma harzianum in soil and in pea and bean rhizospheres. Phytopathology 71: 121-125.
- Huang HC. 1983. Histology, amino acid leakage, and chemical composition of normal and abnormal sclerotia of Sclerotinia sclerotiorum. Can. J. Botany 61: 1443-1447. https://doi.org/10.1139/b83-156
- Huang HC. 1985. Factors affecting myceliogenic germination of sclerotia of Sclerotinia sclerotiorum. Phytopathology 75: 433-437. https://doi.org/10.1094/Phyto-75-433
- Lockwood JL, Filonow AB. 1981. Responses of fungi to nutrient-limiting conditions and to inhibitory substances in natural habitats, pp. 1-61. In Alexander M (ed.), Advances in Microbial Ecology, 1st Ed. Plenum Press, New York and London
- Kim TG, Knudsen GR. 2011. Comparison of real-time PCR and microscopy to evaluate sclerotial colonisation by a biocontrol fungus. Fungal Biol. 115: 317-325. https://doi.org/10.1016/j.funbio.2010.12.008
- Sarrocco S, Mikkelsen L, Vergara M, Jensen DF, Lubeck M, Vannacci G. 2006. Histopathological studies of sclerotia of phytopathogenic fungi parasitized by a GFP transformed Trichoderma virens antagonistic strain. Mycol. Res. 110: 179-187. https://doi.org/10.1016/j.mycres.2005.08.005
- Bae YS, Knudsen GR. 2005. Soil microbial biomass influence on growth and biocontrol efficacy of Trichoderma harzianum. Biol. Control 32: 236-242. https://doi.org/10.1016/j.biocontrol.2004.10.001
- Clarholm M, Popovic B, Rosswall T, Soderstrom B, Sohlenius B, Staaf H, et al. 1981. Biological aspects of nitrogen mineralization in humus from a pine forest podsol incubated under different moisture and temperature conditions. Oikos 37: 137-145. https://doi.org/10.2307/3544457
- Sohlenius B. 1985. Influence of climatic conditions on nematode coexistence: a laboratory experiment with a coniferous forest soil. Oikos 44: 430-438. https://doi.org/10.2307/3565784