DOI QR코드

DOI QR Code

Heterologous Expression of Interferon α-2b in Lactococcus lactis and its Biological Activity against Colorectal Cancer Cells

  • Received : 2020.09.16
  • Accepted : 2020.12.24
  • Published : 2021.03.28

Abstract

Type I Interferons (IFNα) are known for their role as biological anticancer agents owing to their cell-apoptosis inducing properties. Development of an appropriate, cost-effective host expression system is crucial for meeting the increasing demand for proteins. Therefore, this study aims to develop codon-optimized IFNα-2b in L. lactis NZ3900. These cells express extracellular protein using the NICE system and Usp45 signal peptide. To validate the mature form of the expressed protein, the recombinant IFNα-2b was screened in a human colorectal cancer cell line using the cytotoxicity assay. The IFNα-2b was successfully cloned into the pNZ8148 vector, thereby generating recombinant L. lactis pNZ8148-SPUsp45-IFNα-2b. The computational analysis of codon-optimized IFNα-2b revealed no mutation and amino acid changes; additionally, the codon-optimized IFNα-2b showed 100% similarity with native human IFNα-2b, in the BLAST analysis. The partial size exclusion chromatography (SEC) of extracellular protein yielded a 19 kDa protein, which was further confirmed by its positive binding to anti-IFNα-2b in the western blot analysis. The crude protein and SEC-purified partial fraction showed IC50 values of 33.22 ㎍/ml and 127.2 ㎍/ml, respectively, which indicated better activity than the metabolites of L. lactis NZ3900 (231.8 ㎍/ml). These values were also comparable with those of the regular anticancer drug tamoxifen (105.5 ㎍/ml). These results demonstrated L. lactis as a promising host system that functions by utilizing the pNZ8148 NICE system. Meanwhile, codon-optimized usage of the inserted gene increased the optimal protein expression levels, which could be beneficial for its large-scale production. Taken together, the recombinant L. lactis IFNα-2b is a potential alternative treatment for colorectal cancer. Furthermore, its activity was analyzed in the WiDr cell line, to assess its colorectal anticancer activities in vivo.

Keywords

Acknowledgement

This study was fully funded and supported by Prioritas Nasional (PN) Obat 2018-2019 of Research Center of Biotechnology, Indonesian Institute of Science. The author would like to be thankful to Popi Hadi Wisnuwardhani for cell line preparation and Mega Ferdina Warsito for helping in manuscript preparation.

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. 2010. Estimates of worldwide burden of cancer in 2008. Int. J. Cancer. 127: 2893-2917. https://doi.org/10.1002/ijc.25516
  2. World Health Organization. 2019. Indonesia source GLOBOCAN 2018. Int. Agency Res. Cancer. 256: 1-2.
  3. Elsaleh H, Grieu F, Joseph DJ, Iacopetta B. 2001. Molecular epidemiology of colorectal cancer. Int. J. Radiat. Oncol. 51: 260-261.
  4. Pardini B, Kumar R, Naccarati A, Novotny J, Prasad RB, Forsti A, et al. 2011. 5-Fluorouracil-based chemotherapy for colorectal cancer and MTHFR/MTRR genotypes. Br. J. Clin. Pharmacol. 72: 162-163. https://doi.org/10.1111/j.1365-2125.2010.03892.x
  5. Wells JM, Mercenier A. 2008. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nature 6: 349-362. https://doi.org/10.1038/006349a0
  6. Ningrum RA. 2014. Human Interferon Alpha-2b: A Therapeutic Protein for cancer treatment. Scientifica 2014: 1-9. https://doi.org/10.1155/2014/970315
  7. Ningrum RA, Wisnuwardhani PH, Santoso A, Herawati N. 2015. Antiproliferative activity of recombinant human interferon alpha2b on estrogen positive human breast cancer MCF-7 cell line. Indones J. Pharm. 26: 86. https://doi.org/10.14499/indonesianjpharm26iss2pp86
  8. Eguchi H, Nagano H, Yamamoto H, Miyamoto A, Kondo M, Dono K, et al. 2000. Augmentation of antitumor activity of 5-fluorouracil by interferon α is associated with up-regulation of p27Kip1 in human hepatocellular carcinoma cells 1. Clin. Cancer Res. 6: 2881-2890.
  9. Badan Pengawasan Obat dan Makanan Republik Indonesia. 2005. Peraturan Badan pengawas Obat dan Makanan Republik Indonesia. Badan Pengawas Obat. dan. Makanan. 53: 1689-1699.
  10. Kementerian Kesehatan Republik Indonesia. 2015. Rencana Strategis Kementerian Kesehatan Tahun 2015-2019, Kepmenkes RI Nomor HK.02.02/Menkes/52/2015. Kemenkes RI. 248.
  11. Ningrum RA. 2017. Human interferon Alpha2a as anti Hepatitis B and C. Indones. J. Clin. Pharm. 6: 298-310. https://doi.org/10.15416/ijcp.2017.6.4.298
  12. Gull I, Samra ZQ, Aslam MS, Athar MA. 2013. Heterologous expression, immunochemical and computational analysis of recombinant human interferon alpha 2b. Springerplus 2: 264. https://doi.org/10.1186/2193-1801-2-264
  13. Noureddin M, Ghany MG. 2010. Pharmacokinetics and pharmacodynamics of peginterferon and ribavirin: implications for clinical efficacy in the treatment of chronic Hepatitis C. Gastroenterol Clin. North Am. 39: 649-6580. https://doi.org/10.1016/j.gtc.2010.08.008
  14. Zhao HL, Xue C, Du JL, Ren M, Xia S, Liu ZM. 2012. Balancing the pharmacokinetics and pharmacodynamics of interferon-α2b and human serum albumin fusion protein by proteolytic or reductive cleavage increases its in vivo therapeutic efficacy. Mol. Pharm. 9: 664-6702. https://doi.org/10.1021/mp200347q
  15. Ningrum RA, Wardhani WK, Wahyuni I, Mustopa AZ. 2018. Optimization of expression condition, two dimensional and melting point-based characterization of recombinant human interferon alpha-2a fusion and non fusion forms. Ann. Bog. 22: 57. https://doi.org/10.14203/ann.bogor.2018.v22.n2.57-64
  16. Ningrum RA, Santoso A, Herawati N. 2017. Overproduction, purification and characterization of human interferon alpha2a-human serum albumin fusion protein produced in methilotropic yeast Pichia pastoris. J. Phys. Conf. Ser. 835: 1.
  17. Mustopa AZ, Wijaya SK, Ningrum RA, Agustiyanti DF, Triratna L, Alfisyahrin WN. 2019. The expression of codon optimised hepatitis B core antigen (HBcAg) of subgenotype B3 open reading frame in Lactococcus lactis. Microbiol. Biotechnol. Lett. 47: 449-458. https://doi.org/10.4014/mbl.1806.06004
  18. Zhoua Z, Danga Y, Zhou M, Li L, Yu CH, Fu J, et al. 2016. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl. Acad. Sci. USA 113: E6117-E6125. https://doi.org/10.1073/pnas.1606724113
  19. Mustopa AZ, Mariyah S, Fatimah, Budiarti S, Murtiyaningsih H, Alfisyahrin WN. 2018. Construction, heterologous expression, partial purification, and in vitro cytotoxicity of the recombinant plantaricin E produced by Lactococcus lactis against Enteropathogenic Escherichia coli K.1.1 and human cervical carcinoma (HeLa) cells. Mol. Biol. Rep. 45: 1235-12448. https://doi.org/10.1007/s11033-018-4277-6
  20. Anwar RI, Mustopa AZ, Ningrum RA. 2019. Construction and expression of indonesian hepatitis B core antigen (HBcAg) in Lactococcus lactis as potential therapeutic vaccine. Biotechnologia 100: 37-45. https://doi.org/10.5114/bta.2019.83210
  21. Sambrook J, Green MR. 2012. Molecular Cloning: A Laboratory Manual. pp. 1616. 4th Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  22. Borenfreund E, Babich H, Martin-Alguacil N. 1988. Comparisons of two in vitro cytotoxicity assays--the neutral red (nr) and tetrazolium mtt tests. Toxic. in Vitro. 2. 1: 1-6. https://doi.org/10.1016/0887-2333(88)90030-6
  23. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, et al. 2001. The complete genome sequence of the lactic acid bacterium. Genome Res. 11: 731-753. https://doi.org/10.1101/gr.GR-1697R
  24. Kumaran J, Wei L, Kotra LP, Fish EN. 2007. A structural basis for interferon-α-receptor interactions. FASEB J. 21: 3288-32967. https://doi.org/10.1096/fj.07-8585com
  25. MoBiTec. 2015. NICE. Expression System for Lactococcus lactis. Available from http://www.mobitec.com/cms/download/Handbooks/NICE_Expression_System-Handbook.pdf. Accessed Aug. 8, 2019.
  26. Berlec A, Strukelj B. 2009. Large increase in brazzein expression achieved by changing the plasmid/strain combination of the NICE system in Lactococcus lactis. Lett. Appl. Microbiol. 48: 750-755. https://doi.org/10.1111/j.1472-765X.2009.02608.x
  27. Borrero J, Jimenez JJ, Gutiez L, Herranz C, Cintas LM, Hernandez PE. 2011. Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis. Appl. Microbiol. Biotechnol. 89: 131-143. https://doi.org/10.1007/s00253-010-2849-z
  28. Aitken A, Learmonth MP. 2002. Protein determination by UV absorption, the protein protocols handbook. pp. 3-6. 2nd Ed. Totowa, New Jersey.
  29. Ruiz L, Aroche K, Reyes N. 2006. Aggregation of recombinant human interferon alpha 2b in solution: Technical note. AAPS Pharm. Sci. Technol. 7: 5-9.
  30. Viola R, Nyvall P, Pelloux J, Davies HV, Pederse M. 1999. Purification and characterisation of a novel starch synthase selective for uridine 5'-diphosphate glucose from the red alga Gracilaria tenuistipitata. Planta. 185: 143-152.
  31. Winikoff SE, Zeh HJ, Demarco R, Lotze MT. 2006. Cytolytic Assays. pp. 827-849. Pittsburgh, USA.
  32. Meerloo J van, Kaspers GJ, Cloos J. 2011. Cancer cell culture, MTT assay. Methods Mol. Biol. 731: 79-91. https://doi.org/10.1007/978-1-61779-080-5_7
  33. Katla S, Karmakar B, Tadi SRR, Mohan N, Anand B, Pal U, et al. 2019. High level extracellular production of recombinant human interferon alpha 2b in glycoengineered Pichia pastoris: culture medium optimization, high cell density cultivation and biological characterization. J. Appl. Microbiol. 126: 1438-1453. https://doi.org/10.1111/jam.14227
  34. Ekowati H, Astuti I, Mustofa M. 2010. Anticancer activity of calanone on HeLa cell line. Indones J. Chem. 10: 240-244. https://doi.org/10.22146/ijc.21467
  35. Suganya M, Gnanamangai BM, Ravindran B, Chang SW, Selvaraj A , Govindasamy C, et al. 2019. Antitumor effect of proanthocyanidin induced apoptosis in human colorectal cancer (HT-29) cells and its molecular docking studies. BMC Chem. 13: 1-14. https://doi.org/10.1186/s13065-019-0516-8
  36. Bazhanova ED. 2005. Participation of interferon-alpha in regulation of apoptosis. J. Evol. Biochem. Physiol. 41: 127-133. https://doi.org/10.1007/s10893-005-0045-z
  37. Kementerian Kesehatan Republik Indonesia. 2018. Pedoman Nasional Pelayanan Kedokteran Tata Laksana Kanker Kolorektal: Kepmenkes RI Nomor HK.01.07/MENKES/406/2018. Kemenkes RI.
  38. Jonasch E. 2001. Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 6: 34-55. https://doi.org/10.1634/theoncologist.6-1-34
  39. Wang ZH, Wang YL, Zeng XY. 2014. Construction and expression of a heterologous protein in Lactococcus lactis by using the nisincontrolled gene expression system: The case of the PRRSV ORF6 gene. Genet. Mol. Res. 13: 1088-1096. https://doi.org/10.4238/2014.February.20.10
  40. Abbas HT, Kyla-Nikkila K, Ra R, Saris PEJ. 2006. Nisin induction without nisin secretion. Microbiology 152: 1489-1496. https://doi.org/10.1099/mic.0.28544-0
  41. Mustopa AZ, Murtiyaningsih H, Fatimah, Suharsono. 2016. Cloning and heterologous expression of extracellular Plantaricin F produced by Lactobacillus plantarum S34 isolated from 'Bekasam' in Lactococcus lactis. Microbiol. Indones. 10: 95-106. https://doi.org/10.5454/mi.10.3.3
  42. Lages AC, Mustopa AZ, Sukmarini L, Suharsono. 2015. Cloning and expression of Plantaricin W produced by Lactobacillus plantarum U10 isolate from 'Tempoyak' Indonesian fermented food as immunity protein in Lactococcus lactis. Appl. Biochem. Biotechnol. 177: 909-922. https://doi.org/10.1007/s12010-015-1786-9
  43. Loir YL, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, BermudezHumaran LG, et al. 2005. Protein secretion in Lactococcus lactis: An efficient way to increase the overall heterologous protein production. Microb. Cell Fact. 4: 1-13. https://doi.org/10.1186/1475-2859-4-1
  44. Bermudez-Humaran LG, Gilbert S, Langella P, Commissaire J, Loir YL, L'Haridonr R, et al. 2003. Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol. Lett. 224: 307-313. https://doi.org/10.1016/S0378-1097(03)00475-0
  45. Bayat O, Baradaran A, Ariff A, Mohamad R, Rahim RA. 2014. Intra-cellular production of IFN-alpha 2b in Lactococcus lactis. Biotechnol. Lett. 36: 581-585. https://doi.org/10.1007/s10529-013-1390-4
  46. Zhuang Z, Wu Z, Chen M, Wang PG. 2008. Secretion of human interferon-β 1b by recombinant Lactococcus lactis. Biotechnol. Lett. 30: 1819-1823. https://doi.org/10.1007/s10529-008-9761-y
  47. Zhang Q, Zhong J, Liang X, Liu W, Huan L. 2010. Improvement of human interferon alpha secretion by Lactococcus lactis. Biotechnol. Lett. 32: 1271-1277. https://doi.org/10.1007/s10529-010-0285-x
  48. Zhang Q, Zhong J, Huan L. 2011. Expression of hepatitis B virus surface antigen determinants in Lactococcus lactis for oral vaccination. Microbiol. Res. 166: 111-120. https://doi.org/10.1016/j.micres.2010.02.002
  49. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. 2016. Cell viability assays, pp. 295-305. Minor L, Lemmon V, Napper A, Peltier JM, Nelson H, Gal-Edd N (eds.), Assay Guidance Manual, Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda (MD).
  50. Wang W, Roberts CJ. 201. Protein aggregation-Mechanisms, detection, and control. Int. J. Pharm. 550: 251-268. https://doi.org/10.1016/j.ijpharm.2018.08.043