DOI QR코드

DOI QR Code

Characterization of CH4-oxidizing and N2O-reducing Bacterial Consortia Enriched from the Rhizospheres of Maize and Tall Fescue

옥수수와 톨페스큐 근권 유래의 메탄 산화 및 아산화질소 환원 세균 컨소시움 특성

  • Lee, Soojung (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Seoyoung (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Ye Ji (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Yun-Yeong (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 이수정 (이화여자대학교 환경공학과) ;
  • 김서영 (이화여자대학교 환경공학과) ;
  • 김예지 (이화여자대학교 환경공학과) ;
  • 이윤영 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Received : 2021.02.22
  • Accepted : 2021.05.26
  • Published : 2021.06.28

Abstract

CH4-oxidizing and N2O-reducing bacterial consortia were enriched from the rhizosphere soils of maize (Zea mays) and tall fescue (Festuca arundinacea). Illumina MiSeq sequencing analysis was performed to comparatively analyze the bacterial communities of the consortia with those of the rhizosphere soils. Additionally, the effect of root exudate on CH4 oxidation and N2O reduction activities of the microbes was evaluated. Although the inoculum sources varied, the CH4-oxidizing and N2O-reducing consortia derived from maize and tall fescue were similar. The predominant methanotrophs in the CH4-oxidizing consortia were Methylosarcina, Methylococcus, and Methylocystis. Among the N2O-reducing consortia, the representative N2O-reducing bacteria were Cloacibacterium, Azonexus, and Klebsiella. The N2O reduction rate of the N2O-reducing consortium from maize rhizosphere and tall fescue rhizosphere increased by 1.6 and 2.7 times with the addition of maize and tall fescue root exudates, respectively. The CH4 oxidization activity of the CH4-oxidizing consortia did not increase with the addition of root exudates. The CH4-oxidizing and N2O-reducing consortia can be used as promising bioresources to mitigate non-CO2 greenhouse gas emissions during remediation of oil-contaminated soils.

옥수수(Zea mays)와 톨페스큐(Festuca arundinacea) 근권 토양을 접종원으로 사용하여 농화배양을 통해 CH4 산화컨소시움과 N2O 환원 컨소시움을 얻었다. Illumina MiSeq 염기서열 분석법으로 접종원과 컨소시움의 세균 군집 특성을 비교하였고, 컨소시움의 CH4 산화와 N2O 환원 활성에 미치는 뿌리삼출물의 영향을 규명하였다. 접종원이 다름에도 불구하고 옥수수와 톨페스큐 유래 CH4 산화 컨소시움 사이의 유사성이 높았고, 2종의 N2O 환원 컨소시움도 서로 유사성이 높았다. 2종의 CH4 산화 컨소시움에서 우점도가 높은 metanotrophs는 Methylosarcina, Methylococcus 및 Methylocystis이었다. 2 종의 N2O 환원 컨소시움에서 대표적인 N2O 환원 세균은 Cloacibacterium, Azonexus 및 Klebsiella이었다. 옥수수 근권 유래 N2O 환원 컨소시움의 N2O 환원 속도는 옥수수 뿌리삼출물 첨가에 의해 1.6배, 톨페스큐 유래 컨소시움의 N2O 환원 속도는 톨페스큐 뿌리삼출물 첨가에 의해 2.7배 향상되었다. 그러나 CH4 산화 컨소시움의 활성은 뿌리삼출물 첨가에 의해 향상되지 않았다. 본 연구의 옥수수 및 톨페스큐 근권 유래 CH4 산화 및 N2O 환원 컨소시움은 유류 오염 정화과정에서 non-CO2 온실가스배출을 저감하는데 활용 가능하다.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF- 2019R1A2C2006701).

References

  1. Olivier JG, Schure KM, Peters JAHW. 2017. Trends in global CO2 and total greenhouse gas emissions: 2017 report. PBL Netherlands Environmental Assessment Agency, 2674.
  2. IPCC. 2014. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 151. IPCC, Geneva, Switzerland.
  3. Saravanan A, Jeevanantham S, Narayanan VA, Kumar PS, Yaashikaa PR, Muthu CM. 2020. Rhizoremediation-A promising tool for the removal of soil contaminants: A review. J. Environ. Chem. Eng. 8: 103543. https://doi.org/10.1016/j.jece.2019.103543
  4. Cho KS, Jung H. 2017. Methane mitigation technology using methanotrophs: A review. Microbiol. Biotechnol. Lett. 45: 185-199. https://doi.org/10.4014/mbl.1707.07005
  5. Hallin S, Philippot L, Loffler FE, Sanford RA, Jones CM. 2018. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 26: 43-55. https://doi.org/10.1016/j.tim.2017.07.003
  6. Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, et al 2010. Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J. 49: 277-288. https://doi.org/10.1016/j.bej.2010.01.003
  7. Tveit AT, Hestnes AG, Robinson SL, Schintlmeister A, Dedysh SN, Jehmlich N, et al. 2019. Widespread soil bacterium that oxidizes atmospheric methane. Proc. Natl. Acad. Sci. USA 116: 8515-8524. https://doi.org/10.1073/pnas.1817812116
  8. Yokoyama K, Yumura M, Honda T, Ajitomi E. 2016. Characterization of denitrification and net N2O-reduction properties of novel aerobically N2O-reducing bacteria. Soil. Sci. Plant Nutr. 62: 230-239. https://doi.org/10.1080/00380768.2016.1178076
  9. Seo Y, Cho KS. 2020. Rhizoremdiation of petroleum hydrocarboncontaminated soils and greenhouse gas emission characteristics: A review. Microbiol. Biotechnol. Lett. 48: 99-112. https://doi.org/10.4014/mbl.1911.11014
  10. Cho KS. 2020. Plant growth-promoting bacteria for remediation of heavy metal contaminated soil: Characteristics, application and prospects. Microbiol. Biotechnol. Lett. 48: 399-422. https://doi.org/10.48022/mbl.2008.08015
  11. Praeg N, Illmer P. 2020. Microbial community composition in the rhizosphere of Larix decidua under different light regimes with additional focus on methane cycling microorganisms. Sci. Rep. 10: 1-16. https://doi.org/10.1038/s41598-019-56847-4
  12. Gilbert B, Frenzel P. 1995. Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission. Biol. Fertil. Soils. 20: 93-100. https://doi.org/10.1007/BF00336586
  13. Cheneby D, Perrez S, Devroe C, Hallet S, Couton Y, Bizouard F, et al. 2004. Denitrifying bacteria in bulk and maize-rhizospheric soil: diversity and N2O-reducing abilities. Can. J. Microbiol. 50: 469-474. https://doi.org/10.1139/w04-037
  14. Lugtenberg BJ, Kravchenko LV, Simons M. 1999. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol. 1: 439-446. https://doi.org/10.1046/j.1462-2920.1999.00054.x
  15. Cao X, Wang J, Liu S, Chen L, Xiang D, Na X, et al. 2020. Effect of different fertilizers on the bacterial community diversity in rhizosperic soil of broomcorn millet (Panicum miliaceum L.). Arch. Agron. Soil Sci. (in press). https://doi.org/10.1080/03650340.2020.1849625
  16. Canto CF, Simonin M, King E, Moulin L, Bennett MJ, Castrillo G, et al. 2020. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J. 103: 951-964. https://doi.org/10.1111/tpj.14781
  17. Koo SY, Cho KS. 2006. Interaction between plants and rhizobacteria in phytoremediation of heavy metal-contaminated soil. Microbiol. Biotechnol. Lett. 34: 83-93.
  18. Iannucci A, Canfora L, Nigro F, De Vita P, Beleggia R. 2021. Relationships between root morphology, root exudate compounds and rhizosphere microbial community in durum wheat. Appl. Soil Ecol. 158: 103781. https://doi.org/10.1016/j.apsoil.2020.103781
  19. Lee YY, Seo Y, Ha M, Lee J, Yang H, Cho KS. 2020. Evaluation of rhizoremediation and methane emission in diesel-contaminated soil cultivated with tall fescue (Festuca arundinacea). Environ. Res. 194: 110606.
  20. Gerhardt KE, Huang XD, Glick BR, Greenberg BM. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci. J. 76: 20-30.
  21. Tang JC, Wang RG, Niu XW, Wang M, Chu HR, Zhou QX. 2010. Characterisation of the rhizoremediation of petroleum-contaminated soil: effect of different influencing factors. Biogeosciences 7: 3961-3969. https://doi.org/10.5194/bg-7-3961-2010
  22. Guo M, Gong Z, Miao R, Jia C, Rookes J, Cahill D, et al. 2018. Enhanced polycyclic aromatic hydrocarbons degradation in rhizosphere soil planted with tall fescue: Bacterial community and functional gene expression mechanisms. Chemosphere 212: 15-23. https://doi.org/10.1016/j.chemosphere.2018.08.057
  23. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79: 5112-5120. https://doi.org/10.1128/AEM.01043-13
  24. Wu L, Wen C, Qin Y, Yin H, Tu Q, Van Nostrand JD, et al. 2015. Phasing amplicon sequencing on Illumina MiSeq for robust environmental microbial community analysis. BMC Microbiol. 15: 1-12. https://doi.org/10.1186/s12866-014-0320-5
  25. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of highthroughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
  26. Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884-i890. https://doi.org/10.1093/bioinformatics/bty560
  27. Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
  28. Li W, Fu L, Niu B, Wu S, Wooley J. 2012. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform. 13: 656-668. https://doi.org/10.1093/bib/bbs035
  29. Lee EH, Yi TW, Moon KE, Park HJ, Ryu HW, Cho KS. 2011. Characterization of methane oxidation by a methanotroph isolated from a landfill cover soil, South Korea. J. Microbiol. Biotechnol. 21: 753-756. https://doi.org/10.4014/jmb.1102.01055
  30. Park HJ, Kwon JH, Yun J, Cho KS. 2020. Characterization of nitrous oxide reduction by Azospira sp. HJ23 isolated from advanced wastewater treatment sludge. J. Environ. Sci. Health A 55: 1459-1467. https://doi.org/10.1080/10934529.2020.1812321
  31. Callahan BJ, McMurdie PJ, Holmes SP. 2017. Exact sequence variants should replace operational taxonomic units in markergene data analysis. ISME J. 11: 2639-2643. https://doi.org/10.1038/ismej.2017.119
  32. Spain AM, Krumholz LR, Elshahed MS. 2009. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J. 3: 992-1000. https://doi.org/10.1038/ismej.2009.43
  33. Janssen PH. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72: 1719-1728. https://doi.org/10.1128/AEM.72.3.1719-1728.2006
  34. Kersters K, De Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E. 2006. Introduction to the Proteobacteria, pp. 3-37. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds.). The prokaryotes: a handbook on the biology of bacteria, 3rd Ed. Springer, New York. USA.
  35. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE. 2016. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7: 744. https://doi.org/10.3389/fmicb.2016.00744
  36. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, et al. 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev. 80: 1-43. https://doi.org/10.1128/MMBR.00019-15
  37. Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Sugitha TCK, et al. 2018. Actinobacteria from rhizosphere: molecular diversity, distributions, and potential biotechnological applications, pp. 13-41. In Singh BP, Gupta VK, Passari AK (eds.), New and future developments in microbial biotechnology and bioengineering, 1st Ed. Elsevier, India.
  38. Sait M, Davis KE, Janssen PH. 2006. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl. Environ. Microbiol. 72: 1852-1857. https://doi.org/10.1128/AEM.72.3.1852-1857.2006
  39. Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencingbased assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75: 5111-5120. https://doi.org/10.1128/AEM.00335-09
  40. AlSayed A, Fergala A, Eldyasti A. 2019. Enhancement of the cultivation process conditions of mixed culture methanotrophic Proteobacteria phylum enriched from waste activated sludge as the first step for value added recovery process. J. Biosci. Bioeng. 127: 602-608. https://doi.org/10.1016/j.jbiosc.2018.10.018
  41. Hery M, Singer AC, Kumaresan D, Bodrossy L, Stralis-Pavese N, Prosser JI, et al. 2008. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. ISME J. 2: 92-104. https://doi.org/10.1038/ismej.2007.66
  42. Crevecoeur S, Vincent WF, Comte J, Lovejoy C. 2015. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems. Front. Microbiol. 6: 192. https://doi.org/10.3389/fmicb.2015.00192
  43. Torres MJ, Simon J, Rowley G, Bedmar EJ, Richardson DJ, Gates AJ, et al. 2016. Nitrous oxide metabolism in nitrate-reducing bacteria: physiology and regulatory mechanisms. Adv. Microb. Physiol. 68: 353-432. https://doi.org/10.1016/bs.ampbs.2016.02.007
  44. Harter J, El-Hadidi M, Huson DH, Kappler A, Behrens S. 2017. Soil biochar amendment affects the diversity of nosZ transcripts: implications for N2O formation. Sci. Rep. 7: 1-14. https://doi.org/10.1038/s41598-016-0028-x
  45. Graf DR, Jones CM, Hallin S. 2014. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One 9: e114118. https://doi.org/10.1371/journal.pone.0114118
  46. Chistoserdova L, Vorholt JA, Lidstrom ME. 2005. A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol. 6: 208. https://doi.org/10.1186/gb-2005-6-2-208
  47. Kalyuzhnaya MG. 2015. Methylosarcina. BMSAB. 1-7.
  48. Conthe M, Parchen C, Stouten G, Kleerebezem R, van Loosdrecht MC. 2018. O2 versus N2O respiration in a continuous microbial enrichment. Appl. Microbiol. Biotechnol. 102: 8943-8950. https://doi.org/10.1007/s00253-018-9247-3
  49. Fan SQ, Xie GJ, Lu Y, Liu BF, Xing DF, Ding J, et al. 2020. Nitrate/ nitrite dependent anaerobic methane oxidation coupling with anammox in membrane biotrickling filter for nitrogen removal. Environ. Res. 193: 110533.
  50. Cao Q, Liu X, Li N, Xie Z, Li Z, Li D. 2019. Stable-isotopic analysis and high-throughput pyrosequencing reveal the coupling process and bacteria in microaerobic and hypoxic methane oxidation coupled to denitrification. Environ. Pollut. 250: 863-872. https://doi.org/10.1016/j.envpol.2019.04.111
  51. Govorukhina NI, Trotsenko YA. 1991. Methylovorus, a new genus of restricted facultatively methylotrophic bacteria. Int. J. Syst. Evol. Microbiol. 41: 158-162.
  52. Luangthongkam P, Strong PJ, Mahamud SNS, Evans P, Jensen P, Tyson G, et al. 2019. The effect of methane and odd-chain fatty acids on 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) synthesis by a Methylosinus-dominated mixed culture. Bioresour. Bioprocess. 6: 1-10. https://doi.org/10.1186/s40643-018-0235-3
  53. Su Y, Xia FF, Tian BH, Li W, He R. 2014. Microbial community and function of enrichment cultures with methane and toluene. Appl. Microbiol. Biotechnol. 98: 3121-3131. https://doi.org/10.1007/s00253-013-5297-8
  54. Yoon S, Nissen S, Park D, Sanford RA, Loffler FE. 2016. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I NosZ from those harboring clade II NosZ. Appl. Environ. Microbiol. 82: 3793-3800. https://doi.org/10.1128/AEM.00409-16
  55. Conthe M, Wittorf L, Kuenen JG, Kleerebezem R, Hallin S, van Loosdrecht MC. 2018. Growth yield and selection of nosZ clade II types in a continuous enrichment culture of N2O respiring bacteria. Environ. Microbiol. Rep. 10: 239-244. https://doi.org/10.1111/1758-2229.12630
  56. Kim DD, Park D, Yoon H, Song MJ, Yun T, Yoon S. 2019. Development of group-specific nosZ quantification method targeting active nitrous oxide reducing population in complex environmental samples. bioRxiv. 710483.
  57. Quan ZX, Im WT, Lee ST. 2006. Azonexus caeni sp. nov., a denitrifying bacterium isolated from sludge of a wastewater treatment plant. Int. J. Syst. Evol. Microbiol. 56: 1043-1046. https://doi.org/10.1099/ijs.0.64019-0
  58. Zhou S, Zhang Y, Huang T, Liu Y, Fang K, Zhang C. 2019. Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir. Sci. Total Environ. 651: 998-1010. https://doi.org/10.1016/j.scitotenv.2018.09.160
  59. Li H, Zhou Z, Liu Q, Dong H, Duan Y, Li C, et al. 2015. Biological denitrification in high salinity wastewater using semen litchi as a carbon source. RSC Adv. 5: 92836-92842. https://doi.org/10.1039/C5RA12752A
  60. Verbaendert I, Boon N, De Vos P, Heylen K. 2011. Denitrification is a common feature among members of the genus Bacillus. Syst. Appl. Microbiol. 34: 385-391. https://doi.org/10.1016/j.syapm.2011.02.003
  61. Wang H, Chen N, Feng C, Deng Y, Gao Y. 2020. Research on efficient denitrification system based on banana peel waste in sequencing batch reactors: Performance, microbial behavior and dissolved organic matter evolution. Chemosphere 253: 126693. https://doi.org/10.1016/j.chemosphere.2020.126693
  62. Zhao S, Su X, Wang Y, Yang X, Bi M, He Q, et al. 2020. Copper oxide nanoparticles inhibited denitrifying enzymes and electron transport system activities to influence soil denitrification and N2O emission. Chemosphere 245: 125394. https://doi.org/10.1016/j.chemosphere.2019.125394
  63. Martineau C, Mauffrey F, Villemur R. 2015. Comparative analysis of denitrifying activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii. Appl. Environ. Microbiol. 81: 5003-5014. https://doi.org/10.1128/AEM.00848-15
  64. Kamika I, Tekere M. 2017. Impacts of cerium oxide nanoparticles on bacterial community in activated sludge. AMB Express 7: 63. https://doi.org/10.1186/s13568-017-0365-6
  65. Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-Garcia C, et al. 2012. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc. Natl. Acad. Sci. USA 109: 19709-19714. https://doi.org/10.1073/pnas.1211238109
  66. Han F, Zhang M, Shang H, Liu Z, Zhou W. 2020. Microbial community succession, species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic-limited nitrate wastewater. Bioresour. Technol. 315: 123826. https://doi.org/10.1016/j.biortech.2020.123826
  67. McIlroy SJ, Starnawska A, Starnawski P, Saunders AM, Nierychlo M, Nielsen PH, et al. 2016. Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems. Environ. Microbiol. 18: 50-64. https://doi.org/10.1111/1462-2920.12614
  68. Zhou JH, Yu HC, Ye KQ, Wang HY, Ruan YJ, Yu JM. 2019. Optimized aeration strategies for nitrogen removal efficiency: Application of end gas recirculation aeration in the fixed bed biofilm reactor. Environ. Sci. Pollut. Res. Int. 26: 28216-28227. https://doi.org/10.1007/s11356-019-06050-9
  69. Li X, Rui J, Xiong J, Li J, He Z, Zhou J, et al. 2014. Functional potential of soil microbial communities in the maize rhizosphere. PLoS One 9: e112609. https://doi.org/10.1371/journal.pone.0112609
  70. Chen Y, Li S, Zhang Y, Li T, Ge H, Xia S, et al. 2019. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields. Soil Biol. Biochem. 129: 191-200. https://doi.org/10.1016/j.soilbio.2018.11.015
  71. Uchida Y, Clough J. 2015. Nitrous oxide emissions from pastures during wet and cold seasons. Grassl. Sci. 61: 61-74. https://doi.org/10.1111/grs.12093
  72. Naveed M, Brown LK, Raffan AC, George TS, Bengough AG, Roose T, et al. 2017. Plant exudates may stabilize or weaken soil depending on species, origin and time. Eur. J. Soil Sci. 68: 806-816. https://doi.org/10.1111/ejss.12487
  73. Tays C, Guarnieri MT, Sauvageau D, Stein LY. 2018. Combined effects of carbon and nitrogen source to optimize growth of proteobacterial methanotrophs. Front. Microbiol. 9: 2239. https://doi.org/10.3389/fmicb.2018.02239
  74. Bodelier PL, Roslev P, Henckel T, Frenzel P. 2000. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403: 421-424. https://doi.org/10.1038/35000193
  75. Turner JC, Moorberg CJ, Wong A, Shea K, Waldrop MP, Turetsky MR, et al. 2020. Getting to the root of plant-mediated methane emissions and oxidation in a Thermokarst bog. JGR Biogeosciences 125: e2020JG005825.
  76. Vale M, Nguyen C, Dambrine E, Dupouey JL. 2005. Microbial activity in the rhizosphere soil of six herbaceous species cultivated in a greenhouse is correlated with shoot biomass and root C concentrations. Soil Biol. Biochem. 37: 2329-2333. https://doi.org/10.1016/j.soilbio.2005.04.014
  77. Liu W, Hou J, Wang Q, Yang H, Luo Y, Christie P. 2015. Collection and analysis of root exudates of Festuca arundinacea L. and their role in facilitating the phytoremediation of petroleumcontaminated soil. Plant Soil 389: 109-119. https://doi.org/10.1007/s11104-014-2345-9
  78. Henry S, Texier S, Hallet S, Bru D, Dambreville C, Cheneby D, et al. 2008. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ. Microbiol. 10: 3082-3092. https://doi.org/10.1111/j.1462-2920.2008.01599.x
  79. Florio A, Brefort C, Gervaix J, Berard A, Le Roux X. 2019. The responses of NO2--and N2O-reducing bacteria to maize inoculation by the PGPR Azospirillum lipoferum CRT1 depend on carbon availability and determine soil gross and net N2O production. Soil Biol. Biochem. 136: 107524. https://doi.org/10.1016/j.soilbio.2019.107524
  80. Lee YY, Choi H, Cho KS. 2019. Effects of carbon source, C/N ratio, nitrate, temperature, and pH on N2O emission and functional denitrifying genes during heterotrophic denitrification. J. Environ. Sci. Health A. 54: 16-29. https://doi.org/10.1080/10934529.2018.1503903
  81. Liu H, Ding Y, Zhang Q, Liu X, Xu J, Li Y, et al. 2019. Heterotrophic nitrification and denitrification are the main sources of nitrous oxide in two paddy soils. Plant Soil. 445: 39-53. https://doi.org/10.1007/s11104-018-3860-x
  82. Henault C, Bourennane H, Ayzac A, Ratie C, Saby NP, Cohan JP, et al. 2019. Management of soil pH promotes nitrous oxide reduction and thus mitigates soil emissions of this greenhouse gas. Sci. Rep. 9: 1-11. https://doi.org/10.1038/s41598-018-37186-2
  83. Chen T, Liu Y, Zhang B, Sun L. 2019. Plant rhizosphere, soil microenvironment, and functional genes in the nitrogen removal process of bioretention. Environ Sci Process Impacts 21: 2070-2079. https://doi.org/10.1039/C9EM00296K
  84. He X, Yin H, Sun X, Han L, Huang G. 2018. Effect of different particle-size biochar on methane emissions during pig manure/wheat straw aerobic composting: Insights into pore characterization and microbial mechanisms. Bioresour. Technol. 268: 633-637. https://doi.org/10.1016/j.biortech.2018.08.047
  85. Topp E, Pattey E. 1997. Soils as sources and sinks for atmospheric methane. Canadian J. Soil Sci. 77: 167-177. https://doi.org/10.4141/S96-107
  86. Wrage N, Velthof GL, van Beusichem ML, Oenema O. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33: 1723-1732. https://doi.org/10.1016/S0038-0717(01)00096-7
  87. Karakurt I, Aydin G, Aydiner K. 2012. Sources and mitigation of methane emissions by sectors: A critical review. Renew. Energy 39: 40-48. https://doi.org/10.1016/j.renene.2011.09.006
  88. Koo CW, Rosenzweig AC. 2021. Biochemistry of aerobic biological methane oxidation. Chem. Soc. Rev. 50: 3424-3436. https://doi.org/10.1039/D0CS01291B
  89. Venterea RT. 2007. Nitrite-driven nitrous oxide production under aerobic soil conditions: kinetics and biochemical controls. Glob. Change Biol. 13: 1798-1809. https://doi.org/10.1111/j.1365-2486.2007.01389.x
  90. Wrage N, Velthof GL, van Beusichem ML, Oenema O. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33: 1723-1732. https://doi.org/10.1016/S0038-0717(01)00096-7
  91. Sierra CA, Malghani S, Loescher HW. 2017. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil. Biogeosciences 14: 703-710. https://doi.org/10.5194/bg-14-703-2017