DOI QR코드

DOI QR Code

Effects of Impeller Geometry on the 11α-Hydroxylation of Canrenone in Rushton Turbine-Stirred Tanks

  • Rong, Shaofeng (Department of Biological Engineering, Shanghai Institute of Technology) ;
  • Tang, Xiaoqing (Department of Biological Engineering, Shanghai Institute of Technology) ;
  • Guan, Shimin (Department of Biological Engineering, Shanghai Institute of Technology) ;
  • Zhang, Botao (Department of Biological Engineering, East China University of Science and Technology) ;
  • Li, Qianqian (Department of Biological Engineering, Shanghai Institute of Technology) ;
  • Cai, Baoguo (Department of Biological Engineering, Shanghai Institute of Technology) ;
  • Huang, Juan (Department of Biological Engineering, Shanghai Institute of Technology)
  • Received : 2021.04.01
  • Accepted : 2021.05.17
  • Published : 2021.06.28

Abstract

The 11α-hydroxylation of canrenone can be catalyzed by Aspergillus ochraceus in bioreactors, where the geometry of the impeller greatly influences the biotransformation. In this study, the effects of the blade number and impeller diameter of a Rushton turbine on the 11α-hydroxylation of canrenone were considered. The results of fermentation experiments using a 50 mm four-blade impeller showed that 3.40% and 11.43% increases in the conversion ratio were achieved by increasing the blade number and impeller diameter, respectively. However, with an impeller diameter of 60 mm, the conversion ratio with a six-blade impeller was 14.42% lower than that with a four-blade impeller. Data from cold model experiments with a large-diameter six-blade impeller indicated that the serious leakage of inclusions and a 22.08% enzyme activity retention led to a low conversion ratio. Numerical simulations suggested that there was good gas distribution and high fluid flow velocity when the fluid was stirred by large-diameter impellers, resulting in a high dissolved oxygen content and good bulk circulation, which positively affected hyphal growth and metabolism. However, a large-diameter six-blade impeller created overly high shear compared to a large-diameter four-blade impeller, thereby decreasing the conversion ratio. The average shear rates of the former and latter cases were 43.25 s-1 and 35.31 s-1, respectively. We therefore concluded that appropriate shear should be applied in the 11α-hydroxylation of canrenone. Overall, this study provides basic data for the scaled-up production of 11α-hydroxycanrenone.

Keywords

Acknowledgement

This work was supported by the Science and Technology Commission of Shanghai Municipality (Grant no. 17441905400).

References

  1. Huang DM, Zhang TZ, Cui FJ, Sun WJ, Zhao LM, Yang MY, et al. 2011. Simultaneous identification and quantification of canrenone and 11-α-hydroxy-canrenone by LC-MS and HPLC-UVD. J. Biomed. Biotechnol. 2011: 917232.
  2. Al-Aboudi A, Kana'an BM, Zarga MA, Bano S, Atia tul W, Javed K, et al. 2017. Fungal biotransformation of diuretic and antihypertensive drug spironolactone with Gibberella fujikuroi, Curvularia lunata, Fusarium lini, and Aspergillus alliaceus. Steroids 128: 15-22. https://doi.org/10.1016/j.steroids.2017.10.003
  3. Donova MV. 2017. Steroid bioconversions. Methods Mol. Biol. 1645: 1-13. https://doi.org/10.1007/978-1-4939-7183-1_1
  4. Petric S, Hakki T, Bernhardt R, Zigon D, Cresnar B. 2010. Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application. J. Biotechnol. 150: 428-437.
  5. Mao S, Hua B, Wang N, HU X, Ge Z, Li Y, et al. 2013. 11α hydroxylation of 16α, 17-epoxyprogesterone in biphasic ionic liquid/water system by Aspergillus ochraceus. J. Chem. Technol. Biotechnol. 88: 287-292. https://doi.org/10.1002/jctb.3828
  6. Hannemann F, Bichet A, Ewen KM, Bernhardt R. 2007. Cytochrome P450 systems-biological variations of electron transport chains. Biochim. Biophys. Acta 1770: 330-344. https://doi.org/10.1016/j.bbagen.2006.07.017
  7. Amanullah A, Tuttiett B, Nienow AW. 1998. Agitator speed and dissolved oxygen effects in Xanthan fermentations. Biotechnol. Bioeng. 57: 198-210. https://doi.org/10.1002/(SICI)1097-0290(19980120)57:2<198::AID-BIT8>3.0.CO;2-I
  8. Grein TA, Loewe D, Dieken H, Weidner T, Salzig D, Czermak P. 2019. Aeration and shear stress are critical process parameters for the production of oncolytic Measles virus. Front. Bioeng. Biotechnol. 7: 78. https://doi.org/10.3389/fbioe.2019.00078
  9. Amanullah A, Serrano-Carreon L, Castro B, Galindo E, Nienow AW. 1998. The influence of impeller type in pilot scale Xanthan fermentations. Biotechnol. Bioeng. 57: 95-108. https://doi.org/10.1002/(SICI)1097-0290(19980105)57:1<95::AID-BIT12>3.0.CO;2-7
  10. Hudcova W, Machon W, Nienow AW. 1989. Gas-liquid dispersion with dual Rushton impellers. Biotechnol. Bioeng. 34: 617-628. https://doi.org/10.1002/bit.260340506
  11. Kracik T, Moucha T, Petricek R. 2020. Gas-liquid contactors' aeration capacities when agitated by Rushton turbines of various diameters. ACS Omega 5: 5072-5077. https://doi.org/10.1021/acsomega.9b04005
  12. Albaek MO, Gernaey KV, Hansen MS, Stocks SM. 2011. Modeling enzyme production with Aspergillus oryzae in pilot scale vessels with different agitation, aeration, and agitator types. Biotechnol. Bioeng. 108: 1828-1840. https://doi.org/10.1002/bit.23121
  13. Shin W-S, Lee D, Kim S, Jeong Y-S, Chun G-T. 2013. Application of scale-up criterion of constant oxygen mass transfer coefficient (kLa) for production of itaconic acid in a 50 L pilot-scale fermentor by fungal cells of Aspergillus terreus. J. Microbiol. Biotechnol. 23: 1445-1453. https://doi.org/10.4014/jmb.1307.07084
  14. Jayus, McDougall BM, Seviour RJ. 2005. The effect of dissolved oxygen concentrations on (1→3)- and (1→6)-β-glucanase production by Acremonium sp. IMI 383068 in batch culture. Enzyme Microb. Technol. 36: 176-181. https://doi.org/10.1016/j.enzmictec.2004.04.022
  15. Revstedt J, Fuchs L, Kovacs T, Tragardh C. 2000. Influence of impeller type on the flow structure in a stirred reactor. AIChE J. 46: 2373-2382. https://doi.org/10.1002/aic.690461206
  16. Govardhan M, Venkateswarlu G. 2003. Effect of impeller geometry and tongue shape on the flow field of cross flow fans. J. Therm. Sci. 12: 118-125. https://doi.org/10.1007/s11630-003-0052-6
  17. Li ZJ, Shukla V, Wenger KS, Fordyce AP, Pedersen AG, Marten MR. 2002. Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation. Biotechnol. Prog. 18: 437-444. https://doi.org/10.1021/bp020023c
  18. Wang Z, Xue J, Sun H, Zhao M, Wang Y, Chu J, et al. 2020. Evaluation of mixing effect and shear stress of different impeller combinations on nemadectin fermentation. Process Biochem. 92: 120-129. https://doi.org/10.1016/j.procbio.2020.02.018
  19. Lopez JLC, Perez JAS, Sevilla JMF, Porcel EMR, Chisti Y. 2005. Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J. Biotechnol. 116: 61-77. https://doi.org/10.1016/j.jbiotec.2004.10.005
  20. Buffo MM, Esperanca MN, Farinas CS, Badino AC. 2020. Relation between pellet fragmentation kinetics and cellulolytic enzymes production by Aspergillus niger in conventional bioreactor with different impellers. Enzyme Microb. Technol. 139: 109587. https://doi.org/10.1016/j.enzmictec.2020.109587
  21. Li ZJ, Shukla V, Wenger K, Fordyce A, Pedersen AG, Marten M. 2002. Estimation of hyphal tensile strength in production-scale Aspergillus oryzae fungal fermentations. Biotechnol. Bioeng. 77: 601-613. https://doi.org/10.1002/bit.10209
  22. Ghobadi N, Ogino C, Ogawa T, Ohmura N. 2016. Using a flexible shaft agitator to enhance the rheology of a complex fungal fermentation culture. Bioprocess Biosyst. Eng. 39: 1793-1801. https://doi.org/10.1007/s00449-016-1653-2
  23. Justen P, Paul GC, Nienow AW, Thomas CR. 1998. Dependence of Penicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity. Biotechnol. Bioeng. 59: 762-775. https://doi.org/10.1002/(SICI)1097-0290(19980920)59:6<762::AID-BIT13>3.0.CO;2-7
  24. Gu D, Liu Z, Tao C, Li J, Wang Y. 2019. Numerical simulation of gas-liquid dispersion in a stirred tank agitated by punched rigidflexible impeller. Int. J. Chem. React. Eng. 17: 588-597.
  25. Chen P, Sanyal J, Dudukovic MP. 2005. Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures. Chem. Eng. Sci. 60: 1085-1101. https://doi.org/10.1016/j.ces.2004.09.070
  26. Gelves R, Dietrich A, Takors R. 2014. Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller. Bioprocess Biosyst. Eng. 37: 365-375. https://doi.org/10.1007/s00449-013-1001-8
  27. Amer M, Feng Y, Ramsey JD. 2019. Using CFD simulations and statistical analysis to correlate oxygen mass transfer coefficient to both geometrical parameters and operating conditions in a stirred-tank bioreactor. Biotechnol. Prog. 35: e2785. https://doi.org/10.1002/btpr.2785
  28. Duan S, Yuan G, Zhao Y, Ni W, Luo H, Shi Z, et al. 2013. Simulation of computational fluid dynamics and comparison of cephalosporin C fermentation performance with different impeller combinations. Korean J. Chem. Eng. 30: 1097-1104. https://doi.org/10.1007/s11814-013-0010-2
  29. Xia J-Y, Wang Y-H, Zhang S-L, Chen N, Yin P, Zhuang Y-P, et al. 2009. Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochem. Eng. J. 43: 252-260. https://doi.org/10.1016/j.bej.2008.10.010
  30. Contente ML, Guidi B, Serra I, De Vitis V, Romano D, Pinto A, et al. 2016. Development of a high-yielding bioprocess for 11-α hydroxylation of canrenone under conditions of oxygen-enriched air supply. Steroids 116: 1-4. https://doi.org/10.1016/j.steroids.2016.09.013
  31. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  32. Snyder JC, Desborough SL. 1978. Rapid estimation of potato tuber total protein content with coomassie brilliant blue G-250. Theor. Appl. Genet. 52: 135-139. https://doi.org/10.1007/BF00264747
  33. Moore S. 1968. Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J. Biol. Chem. 243: 6281-6283. https://doi.org/10.1016/S0021-9258(18)94488-1
  34. Harvey LM, McNeil B, Berry DR, White S. 1998. Autolysis in batch cultures of Penicillium chrysogenum at varying agitation rates. Enzyme Microb. Technol. 22: 446-458. https://doi.org/10.1016/S0141-0229(97)00234-2
  35. Riley GL, Tucker KG, Paul GC, Thomas CR. 2000. Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnol. Bioeng. 68: 160-172. https://doi.org/10.1002/(SICI)1097-0290(20000420)68:2<160::AID-BIT5>3.0.CO;2-P
  36. Tokura Y, Uddin MA, Kato Y. 2019. Effect of suspension pattern of sedimentary particles on solid/liquid mass transfer in a mechanically stirred vessel. Ind. Eng. Chem. Res. 58: 10172-10178. https://doi.org/10.1021/acs.iecr.9b00594
  37. Lin Y, Zhang Z, Thibault J. 2011. New impeller for viscous fermentation: power input and mass transfer coefficient correlations. Ind. Eng. Chem. Res. 50: 3510-3516. https://doi.org/10.1021/ie101171j
  38. Tang W, Pan A, Lu H, Xia J, Zhuang Y, Zhang S, et al. 2015. Improvement of glucoamylase production using axial impellers with low power consumption and homogeneous mass transfer. Biochem. Eng. J. 99: 167-176. https://doi.org/10.1016/j.bej.2015.03.025
  39. Dohi N, Takahashi T, Minekawa K, Kawase Y. 2004. Power consumption and solid suspension performance of large-scale impellers in gas-liquid-solid three-phase stirred tank reactors. Chem. Eng. J. 97: 103-114. https://doi.org/10.1016/S1385-8947(03)00148-7
  40. Rao DVK, Ramu CT, Rao JV, Narasu ML, Rao AKSB. 2008. Impact of dissolved oxygen concentration on some key parameters and production of rhG-CSF in batch fermentation. J. Ind. Microbiol. Biotechnol. 35: 991-1000. https://doi.org/10.1007/s10295-008-0374-1
  41. Tang YJ, Li HM, Hamel JFP. 2009. Effects of dissolved oxygen tension and agitation rate on the production of heat-shock protein glycoprotein 96 by MethA tumor cell suspension culture in stirred-tank bioreactors. Bioprocess Biosyst. Eng. 32: 475-484. https://doi.org/10.1007/s00449-008-0267-8
  42. Fujasova M, Linek V, Moucha T. 2007. Mass transfer correlations for multiple-impeller gas-liquid contactors. Analysis of the effect of axial dispersion in gas and liquid phases on "local" kLa values measured by the dynamic pressure method in individual stages of the vessel. Chem. Eng. Sci. 62: 1650-1669. https://doi.org/10.1016/j.ces.2006.12.003
  43. Bao Y, Wang B, Lin M, Gao Z, Yang J. 2015. Influence of impeller diameter on overall gas dispersion properties in a sparged multiimpeller stirred tank. Chin. J. Chem. Eng. 23: 890-896. https://doi.org/10.1016/j.cjche.2014.11.030
  44. Kilonzo PM, Margaritis A. 2004. The effects of non-Newtonian fermentation broth viscosity and small bubble segregation on oxygen mass transfer in gas-lift bioreactors: a critical review. Biochem. Eng. J. 17: 27-40. https://doi.org/10.1016/S1369-703X(03)00121-9
  45. Najafpour GD. 2015. Gas and liquid system (aeration and agitation), pp. 51-102. In Najafpour GD (ed.), Biochemical Engineering and Biotechnology, 2th Ed. Elsevier, Amsterdam, Netherlands.
  46. Clark TA, Maddox IS, Chong R. 1983. The effect of glucose on 11β- and 19-hydroxylation of Reichstein's Substance S by Pellicularia filamentosa. Appl. Microbiol. Biotechnol. 17: 211-215. https://doi.org/10.1007/BF00510417
  47. Chen K-C, Wey H-C. 1990. 11β-Hydroxylation of coxtexolone by Curvularia lunata. Enzyme Microb. Technol. 12: 305-308. https://doi.org/10.1016/0141-0229(90)90103-W
  48. Gbewonyo K, Buckland BC, Lilly MD. 1990. Development of a large-scale continuous substrate feed process for the biotransformation of simvastatin by Nocardia sp. Biotechnol. Bioeng. 37: 1101-1107. https://doi.org/10.1002/bit.260371116
  49. Clark TA, Chong R, Maddox IS. 1982. The effect of dissolved oxygen tension on 11β- and 19-hydroxylation of Reichstein's Substance S by Pellicularia filamentosa. Appl. Microbiol. Biotechnol. 14: 131-135. https://doi.org/10.1007/BF00497887
  50. El-Enshasy H, Hellmuth K, Rinas U. 1999. Fungal morphology in submerged cultures and its relation to glucose oxidase excretion by recombinant Aspergillus niger. Appl. Biochem. Biotechnol. 81: 1-11. https://doi.org/10.1385/ABAB:81:1:1
  51. Chen X, Zhou J, Ding Q, Luo Q, Liu L. 2019. Morphology engineering of Aspergillus oryzae for L-malate production. Biotechnol. Bioeng. 116: 2662-2673. https://doi.org/10.1002/bit.27089
  52. Ghobadi N, Ogino C, Yamabe K, Ohmura N. 2017. Characterizations of the submerged fermentation of Aspergillus oryzae using a Fullzone impeller in a stirred tank bioreactor. J. Biosci. Bioeng. 123: 101-108. https://doi.org/10.1016/j.jbiosc.2016.07.001
  53. Znidarsic P, Komel R, Pavko A. 1998. Studies of a pelleted growth form of Rhizopus nigricans as a biocatalyst for progesterone 11 αhydroxylation. J. Biotechnol. 60: 207-216. https://doi.org/10.1016/S0168-1656(98)00010-8
  54. Shen Y, Wang L, Liang J, Tang R, Wang M. 2016. Effects of two kinds of imidazolium-based ionic liquids on the characteristics of steroid-transformation Arthrobacter simplex. Microb. Cell Fact. 15: 118-127. https://doi.org/10.1186/s12934-016-0518-3