Acknowledgement
This work was supported by the Science and Technology Commission of Shanghai Municipality (Grant no. 17441905400).
References
- Huang DM, Zhang TZ, Cui FJ, Sun WJ, Zhao LM, Yang MY, et al. 2011. Simultaneous identification and quantification of canrenone and 11-α-hydroxy-canrenone by LC-MS and HPLC-UVD. J. Biomed. Biotechnol. 2011: 917232.
- Al-Aboudi A, Kana'an BM, Zarga MA, Bano S, Atia tul W, Javed K, et al. 2017. Fungal biotransformation of diuretic and antihypertensive drug spironolactone with Gibberella fujikuroi, Curvularia lunata, Fusarium lini, and Aspergillus alliaceus. Steroids 128: 15-22. https://doi.org/10.1016/j.steroids.2017.10.003
- Donova MV. 2017. Steroid bioconversions. Methods Mol. Biol. 1645: 1-13. https://doi.org/10.1007/978-1-4939-7183-1_1
- Petric S, Hakki T, Bernhardt R, Zigon D, Cresnar B. 2010. Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application. J. Biotechnol. 150: 428-437.
- Mao S, Hua B, Wang N, HU X, Ge Z, Li Y, et al. 2013. 11α hydroxylation of 16α, 17-epoxyprogesterone in biphasic ionic liquid/water system by Aspergillus ochraceus. J. Chem. Technol. Biotechnol. 88: 287-292. https://doi.org/10.1002/jctb.3828
- Hannemann F, Bichet A, Ewen KM, Bernhardt R. 2007. Cytochrome P450 systems-biological variations of electron transport chains. Biochim. Biophys. Acta 1770: 330-344. https://doi.org/10.1016/j.bbagen.2006.07.017
- Amanullah A, Tuttiett B, Nienow AW. 1998. Agitator speed and dissolved oxygen effects in Xanthan fermentations. Biotechnol. Bioeng. 57: 198-210. https://doi.org/10.1002/(SICI)1097-0290(19980120)57:2<198::AID-BIT8>3.0.CO;2-I
- Grein TA, Loewe D, Dieken H, Weidner T, Salzig D, Czermak P. 2019. Aeration and shear stress are critical process parameters for the production of oncolytic Measles virus. Front. Bioeng. Biotechnol. 7: 78. https://doi.org/10.3389/fbioe.2019.00078
- Amanullah A, Serrano-Carreon L, Castro B, Galindo E, Nienow AW. 1998. The influence of impeller type in pilot scale Xanthan fermentations. Biotechnol. Bioeng. 57: 95-108. https://doi.org/10.1002/(SICI)1097-0290(19980105)57:1<95::AID-BIT12>3.0.CO;2-7
- Hudcova W, Machon W, Nienow AW. 1989. Gas-liquid dispersion with dual Rushton impellers. Biotechnol. Bioeng. 34: 617-628. https://doi.org/10.1002/bit.260340506
- Kracik T, Moucha T, Petricek R. 2020. Gas-liquid contactors' aeration capacities when agitated by Rushton turbines of various diameters. ACS Omega 5: 5072-5077. https://doi.org/10.1021/acsomega.9b04005
- Albaek MO, Gernaey KV, Hansen MS, Stocks SM. 2011. Modeling enzyme production with Aspergillus oryzae in pilot scale vessels with different agitation, aeration, and agitator types. Biotechnol. Bioeng. 108: 1828-1840. https://doi.org/10.1002/bit.23121
- Shin W-S, Lee D, Kim S, Jeong Y-S, Chun G-T. 2013. Application of scale-up criterion of constant oxygen mass transfer coefficient (kLa) for production of itaconic acid in a 50 L pilot-scale fermentor by fungal cells of Aspergillus terreus. J. Microbiol. Biotechnol. 23: 1445-1453. https://doi.org/10.4014/jmb.1307.07084
- Jayus, McDougall BM, Seviour RJ. 2005. The effect of dissolved oxygen concentrations on (1→3)- and (1→6)-β-glucanase production by Acremonium sp. IMI 383068 in batch culture. Enzyme Microb. Technol. 36: 176-181. https://doi.org/10.1016/j.enzmictec.2004.04.022
- Revstedt J, Fuchs L, Kovacs T, Tragardh C. 2000. Influence of impeller type on the flow structure in a stirred reactor. AIChE J. 46: 2373-2382. https://doi.org/10.1002/aic.690461206
- Govardhan M, Venkateswarlu G. 2003. Effect of impeller geometry and tongue shape on the flow field of cross flow fans. J. Therm. Sci. 12: 118-125. https://doi.org/10.1007/s11630-003-0052-6
- Li ZJ, Shukla V, Wenger KS, Fordyce AP, Pedersen AG, Marten MR. 2002. Effects of increased impeller power in a production-scale Aspergillus oryzae fermentation. Biotechnol. Prog. 18: 437-444. https://doi.org/10.1021/bp020023c
- Wang Z, Xue J, Sun H, Zhao M, Wang Y, Chu J, et al. 2020. Evaluation of mixing effect and shear stress of different impeller combinations on nemadectin fermentation. Process Biochem. 92: 120-129. https://doi.org/10.1016/j.procbio.2020.02.018
- Lopez JLC, Perez JAS, Sevilla JMF, Porcel EMR, Chisti Y. 2005. Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J. Biotechnol. 116: 61-77. https://doi.org/10.1016/j.jbiotec.2004.10.005
- Buffo MM, Esperanca MN, Farinas CS, Badino AC. 2020. Relation between pellet fragmentation kinetics and cellulolytic enzymes production by Aspergillus niger in conventional bioreactor with different impellers. Enzyme Microb. Technol. 139: 109587. https://doi.org/10.1016/j.enzmictec.2020.109587
- Li ZJ, Shukla V, Wenger K, Fordyce A, Pedersen AG, Marten M. 2002. Estimation of hyphal tensile strength in production-scale Aspergillus oryzae fungal fermentations. Biotechnol. Bioeng. 77: 601-613. https://doi.org/10.1002/bit.10209
- Ghobadi N, Ogino C, Ogawa T, Ohmura N. 2016. Using a flexible shaft agitator to enhance the rheology of a complex fungal fermentation culture. Bioprocess Biosyst. Eng. 39: 1793-1801. https://doi.org/10.1007/s00449-016-1653-2
- Justen P, Paul GC, Nienow AW, Thomas CR. 1998. Dependence of Penicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity. Biotechnol. Bioeng. 59: 762-775. https://doi.org/10.1002/(SICI)1097-0290(19980920)59:6<762::AID-BIT13>3.0.CO;2-7
- Gu D, Liu Z, Tao C, Li J, Wang Y. 2019. Numerical simulation of gas-liquid dispersion in a stirred tank agitated by punched rigidflexible impeller. Int. J. Chem. React. Eng. 17: 588-597.
- Chen P, Sanyal J, Dudukovic MP. 2005. Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures. Chem. Eng. Sci. 60: 1085-1101. https://doi.org/10.1016/j.ces.2004.09.070
- Gelves R, Dietrich A, Takors R. 2014. Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller. Bioprocess Biosyst. Eng. 37: 365-375. https://doi.org/10.1007/s00449-013-1001-8
- Amer M, Feng Y, Ramsey JD. 2019. Using CFD simulations and statistical analysis to correlate oxygen mass transfer coefficient to both geometrical parameters and operating conditions in a stirred-tank bioreactor. Biotechnol. Prog. 35: e2785. https://doi.org/10.1002/btpr.2785
- Duan S, Yuan G, Zhao Y, Ni W, Luo H, Shi Z, et al. 2013. Simulation of computational fluid dynamics and comparison of cephalosporin C fermentation performance with different impeller combinations. Korean J. Chem. Eng. 30: 1097-1104. https://doi.org/10.1007/s11814-013-0010-2
- Xia J-Y, Wang Y-H, Zhang S-L, Chen N, Yin P, Zhuang Y-P, et al. 2009. Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochem. Eng. J. 43: 252-260. https://doi.org/10.1016/j.bej.2008.10.010
- Contente ML, Guidi B, Serra I, De Vitis V, Romano D, Pinto A, et al. 2016. Development of a high-yielding bioprocess for 11-α hydroxylation of canrenone under conditions of oxygen-enriched air supply. Steroids 116: 1-4. https://doi.org/10.1016/j.steroids.2016.09.013
- Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
- Snyder JC, Desborough SL. 1978. Rapid estimation of potato tuber total protein content with coomassie brilliant blue G-250. Theor. Appl. Genet. 52: 135-139. https://doi.org/10.1007/BF00264747
- Moore S. 1968. Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J. Biol. Chem. 243: 6281-6283. https://doi.org/10.1016/S0021-9258(18)94488-1
- Harvey LM, McNeil B, Berry DR, White S. 1998. Autolysis in batch cultures of Penicillium chrysogenum at varying agitation rates. Enzyme Microb. Technol. 22: 446-458. https://doi.org/10.1016/S0141-0229(97)00234-2
- Riley GL, Tucker KG, Paul GC, Thomas CR. 2000. Effect of biomass concentration and mycelial morphology on fermentation broth rheology. Biotechnol. Bioeng. 68: 160-172. https://doi.org/10.1002/(SICI)1097-0290(20000420)68:2<160::AID-BIT5>3.0.CO;2-P
- Tokura Y, Uddin MA, Kato Y. 2019. Effect of suspension pattern of sedimentary particles on solid/liquid mass transfer in a mechanically stirred vessel. Ind. Eng. Chem. Res. 58: 10172-10178. https://doi.org/10.1021/acs.iecr.9b00594
- Lin Y, Zhang Z, Thibault J. 2011. New impeller for viscous fermentation: power input and mass transfer coefficient correlations. Ind. Eng. Chem. Res. 50: 3510-3516. https://doi.org/10.1021/ie101171j
- Tang W, Pan A, Lu H, Xia J, Zhuang Y, Zhang S, et al. 2015. Improvement of glucoamylase production using axial impellers with low power consumption and homogeneous mass transfer. Biochem. Eng. J. 99: 167-176. https://doi.org/10.1016/j.bej.2015.03.025
- Dohi N, Takahashi T, Minekawa K, Kawase Y. 2004. Power consumption and solid suspension performance of large-scale impellers in gas-liquid-solid three-phase stirred tank reactors. Chem. Eng. J. 97: 103-114. https://doi.org/10.1016/S1385-8947(03)00148-7
- Rao DVK, Ramu CT, Rao JV, Narasu ML, Rao AKSB. 2008. Impact of dissolved oxygen concentration on some key parameters and production of rhG-CSF in batch fermentation. J. Ind. Microbiol. Biotechnol. 35: 991-1000. https://doi.org/10.1007/s10295-008-0374-1
- Tang YJ, Li HM, Hamel JFP. 2009. Effects of dissolved oxygen tension and agitation rate on the production of heat-shock protein glycoprotein 96 by MethA tumor cell suspension culture in stirred-tank bioreactors. Bioprocess Biosyst. Eng. 32: 475-484. https://doi.org/10.1007/s00449-008-0267-8
- Fujasova M, Linek V, Moucha T. 2007. Mass transfer correlations for multiple-impeller gas-liquid contactors. Analysis of the effect of axial dispersion in gas and liquid phases on "local" kLa values measured by the dynamic pressure method in individual stages of the vessel. Chem. Eng. Sci. 62: 1650-1669. https://doi.org/10.1016/j.ces.2006.12.003
- Bao Y, Wang B, Lin M, Gao Z, Yang J. 2015. Influence of impeller diameter on overall gas dispersion properties in a sparged multiimpeller stirred tank. Chin. J. Chem. Eng. 23: 890-896. https://doi.org/10.1016/j.cjche.2014.11.030
- Kilonzo PM, Margaritis A. 2004. The effects of non-Newtonian fermentation broth viscosity and small bubble segregation on oxygen mass transfer in gas-lift bioreactors: a critical review. Biochem. Eng. J. 17: 27-40. https://doi.org/10.1016/S1369-703X(03)00121-9
- Najafpour GD. 2015. Gas and liquid system (aeration and agitation), pp. 51-102. In Najafpour GD (ed.), Biochemical Engineering and Biotechnology, 2th Ed. Elsevier, Amsterdam, Netherlands.
- Clark TA, Maddox IS, Chong R. 1983. The effect of glucose on 11β- and 19-hydroxylation of Reichstein's Substance S by Pellicularia filamentosa. Appl. Microbiol. Biotechnol. 17: 211-215. https://doi.org/10.1007/BF00510417
- Chen K-C, Wey H-C. 1990. 11β-Hydroxylation of coxtexolone by Curvularia lunata. Enzyme Microb. Technol. 12: 305-308. https://doi.org/10.1016/0141-0229(90)90103-W
- Gbewonyo K, Buckland BC, Lilly MD. 1990. Development of a large-scale continuous substrate feed process for the biotransformation of simvastatin by Nocardia sp. Biotechnol. Bioeng. 37: 1101-1107. https://doi.org/10.1002/bit.260371116
- Clark TA, Chong R, Maddox IS. 1982. The effect of dissolved oxygen tension on 11β- and 19-hydroxylation of Reichstein's Substance S by Pellicularia filamentosa. Appl. Microbiol. Biotechnol. 14: 131-135. https://doi.org/10.1007/BF00497887
- El-Enshasy H, Hellmuth K, Rinas U. 1999. Fungal morphology in submerged cultures and its relation to glucose oxidase excretion by recombinant Aspergillus niger. Appl. Biochem. Biotechnol. 81: 1-11. https://doi.org/10.1385/ABAB:81:1:1
- Chen X, Zhou J, Ding Q, Luo Q, Liu L. 2019. Morphology engineering of Aspergillus oryzae for L-malate production. Biotechnol. Bioeng. 116: 2662-2673. https://doi.org/10.1002/bit.27089
- Ghobadi N, Ogino C, Yamabe K, Ohmura N. 2017. Characterizations of the submerged fermentation of Aspergillus oryzae using a Fullzone impeller in a stirred tank bioreactor. J. Biosci. Bioeng. 123: 101-108. https://doi.org/10.1016/j.jbiosc.2016.07.001
- Znidarsic P, Komel R, Pavko A. 1998. Studies of a pelleted growth form of Rhizopus nigricans as a biocatalyst for progesterone 11 αhydroxylation. J. Biotechnol. 60: 207-216. https://doi.org/10.1016/S0168-1656(98)00010-8
- Shen Y, Wang L, Liang J, Tang R, Wang M. 2016. Effects of two kinds of imidazolium-based ionic liquids on the characteristics of steroid-transformation Arthrobacter simplex. Microb. Cell Fact. 15: 118-127. https://doi.org/10.1186/s12934-016-0518-3